Уравнения равновесия
Рассмотрим распространенный частный случай равновесия жидкости, когда на нее действует лишь одна массовая сила, сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объема жидкости. Если этот объем весьма мал по сравнению с объемом Земли, то свободную поверхность жидкости можно считать горизонтальной плоскостью. Пусть жидкость содержится в сосуде и на ее свободную поверхность действует давление Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем высотой Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикаль: Последний член уравнения представляет собой вес жидкости в указанном объеме. Силы давления по боковой поверхности цилиндра в уравнение не входят, так как они нормальны к вертикали. Сократив ,выражение на Полученное уравнение называют основным уравнением. гидростатики; по нему можно подсчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления Величина Давление жидкости, как видно из формулы (2.2), возрастает с увеличением глубины по закону прямой и на данной глубине есть величина постоянная. Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня.В данном случае поверхностями уровня являются горизонтальные плоскости, а свободная поверхность является одной из поверхностей уровня. Возьмем на произвольной высоте горизонтальную плоскость сравнения, от которой вертикально вверх будем отсчитывать координаты Так как точка М взята произвольно, можно утверждать, что для всего рассматриваемого неподвижного объема жидкости Координата Таким образом, гидростатический напор есть величина постоянная для всего объема неподвижной жидкости. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|