Здавалка
Главная | Обратная связь

Ингибиторы химические



Ингибиторы химические, вещества, тормозящие разнообразные химические реакции; находят широкое применение для предотвращения или замедления нежелательных процессов, например коррозионного разрушения металлов, окисления топлив, смазочных масел и пищевых продуктов, полимеризации, старения полимеров и др. Характерной особенностью нгибиторов химических является эффективность их в малых концентрациях — от тысячных долей % до нескольких %. Эффективность ингибирования зависит от природы ингибиторов химических и характера ингибируемой реакции, а также от количества ингибиторов химических, времени его введения в реакционную среду, температуры, содержания других веществ, влияющих на эффективность ингибитора.

Ингибиторы коррозии вводят в коррозионно-активную среду для защиты металлов от коррозии. Ингибиторы коррозии относятся к наиболее эффективным средствам борьбы с коррозией и находят широкое применение при травлении металлов с целью удаления окалины, для защиты энергетического оборудования, при добыче и переработке нефти и газа, в промышленном и бытовом водоснабжении, в охладительных системах промышленного оборудования и транспортных средств (двигатели внутреннего сгорания), для защиты от атмосферной коррозии изделий машиностроения, при гидроиспытаниях и т. д. Широко используют нгибиторы химические для защиты деталей машин и приборов во время межоперационного хранения, консервации и транспортировки. Защитное действие ингибиторов коррозии определяется их способностью изменять кинетику электрохимических реакций, обусловливающих коррозионный процесс.

В зависимости от того, какую из электрохимических реакций сильнее тормозят ингибиторы коррозии, они делятся на анодные, катодные и смешанные.

К анодным ингибиторам коррозии относятся, например, такие окислители, как хроматы и нитриты, широко применяемые в промышленности (авиационной, химической, нефтеперерабатывающей и т. д.). При действии этих ингибиторах металл переходит в устойчивое, пассивное состояние. В качестве катодных ингибиторов коррозии применяют соли мышьяка и висмута, а также различные органические соединения, повышающие перенапряжениеводорода на металле.

Катодными ингибиторами коррозии могут служить также вещества, поглощающие катодные деполяризаторы; в частности, для защиты котельной аппаратуры применяют гидразин или сульфит натрия, связывающие растворённый в воде кислород. В зависимости от природы коррозионной среды различают ингибиторы коррозии для кислых, нейтральных и щелочных сред, а также ингибиторы атмосферной коррозии. Для защиты от атмосферной коррозии, например, широкое распространение получили так называемые летучие ингибиторы, пары которых адсорбируются на поверхности металла. Широко распространённый и эффективный метод применения ингибиторов атмосферной коррозии — введение их в упаковочные материалы. Для защиты чёрных металлов применяют нитрит дициклогексиламмония (НДА), карбонат циклогексиламмония (КЦА), смеси мочевины или гексаметилентетрамина (уротропина) с нитритом натрия (УНИ); для защиты чёрных металлов в сочетании с цветными — соли нитро- и динитро-бензойной кислот с аминами. С целью предотвращения коррозии металлов И. х. вводят также в топлива, масла, смазки и полимерные покрытия. В масла и смазки добавляют окисленные нефтепродукты, нитрованные масла, сульфонаты, амины, нитриты и др; в полимерные покрытия — хроматы, нитрованные масла и др.

Ингибиторы окислительных реакций тормозят окисление молекулярным кислородом; они добавляются к топливам, маслам и смазкам для замедления их окисления при хранении и в процессе применения. Содержание в топливах и маслах некоторых металлов оказывает каталитическое действие на окисление и снижает эффективность ингибиторов. Для устранения этого влияния в топлива вводят так называемые дезактиваторы металлов, например салицилидены, образующие с металлами нереакционноспособные комплексы. В качестве ингибиторов окислительных реакций используют главным образом фенолы, ароматические амины и некоторые сернистые соединения. Например, в бензины добавляют фенил-n-aминофенол, 2,4-диметил-6-трет-бутилфенол, 2,6-ди-трет-бутил-4-метилфенол (техническое название тонанол-О) и др. Ингибиторы химические, вводимые с той же целью в смазочные масла, обладают обычно сложной химической природой и, помимо повышения стойкости к окислению, улучшают также и ряд других эксплуатационных характеристик масел.

Ингибиторы полимеризации задерживают или замедляют полимеризацию мономеров (а также олигомеров) при их хранении или перегонке. Ингибиторы полимеризации должны предохранять не только от спонтанной полимеризации, но и от окисления кислородом воздуха. Ингибиторами полимеризации являются сера, фенолы, таннин, канифоль, соли меди и др.

 

Деаэрация воды

 

В любой жидкости, находящейся в открытом резервуаре, растворено определенное количество газов. Не является исключением и вода. Состав растворенных в ней газов может быть разным, но в основном это азот, кислород и углекислый газ. В наибольшем количестве – от 15 до 40 мг/л – в воде содержится азот. Однако этот газ инертный, и его присутствие особого вреда не приносит, чего нельзя сказать о кислороде и углекислом газе, которые становятся причиной коррозии, особенно при повышенных температурах.

Газы попадают в воду различными путями: при прямом контакте с воздухом атмосферы, после проникновения в системы через некоторые материалы, особенно пластик, и в процессе реализации различных стадий водоподготовки – охлаждения в градирнях, фильтрации и др. Поэтому в течение всего времени использования воды в качестве теплоносителя ее нужно постоянно подвергать дегазации. Когда речь идет об удалении из воды газов, входящих в состав воздуха, применяется термин «деаэрация».

Деаэрация воды может осуществляться термическим, химическим, мембранным и другими методами. Наиболее эффективная и одновременно широко распространенная технология – термическая деаэрация воды.

Еще в XVIII в. британский физик Вильям Генри доказал, что количество растворенных газов определяется температурой и давлением жидкости. Растворимость газа в воде уменьшается с ростом температуры и понижением внешнего давления. Однако переусердствовать с нагревом и созданием разряжения также нельзя, поскольку это вызовет интенсивное парообразование, смешивание которого с воздухом сводит на нет все попытки деаэрации воды. Деаэрацию проводят в условиях, когда обеспечивается достаточная скорость процесса, а интенсивное парообразование еще не началось. Это достигается варьированием температуры и давления. Термическая деаэрация может быть осуществлена при повышенной температуре и повышенном, атмосферном и пониженном давлении.

Технология деаэрации реализуется в аппаратах повышенного, атмосферного, пониженного давления и вакуумных деаэраторах (рис. 2.12).

Рис.1.12. Деаэратор атмосферного типа

 

Нагрев деаэрируемой воды до состояния насыщения при деаэрации с повышенным или атмосферным давлением производится с помощью водяного пара, а при осуществлении вакуумной деаэрации обычно используется перегретая вода.

Деаэрация – гетерофазный массообменный процесс, в котором растворенные газы воды переходят в газовую фазу водяного пара. Этот процесс может проходить в тонких слоях воды, но более эффективное его протекание наблюдается в мелкокапельном состоянии. Часто для перевода воды в требуемое состояние используется барботаж водяного пара через тонкий слой обрабатываемой воды.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.