Здавалка
Главная | Обратная связь

Правила зміщення, особливості спектрів при радіоактивному розпаді



Радіоактивний розпад відбувається, як і будь-який ін­ший процес в живій та неживій природі, згідно з законами збереження енергії, маси, імпульсу, електричного заряду, спі­ну тощо.

У відповідності з законом збереження електричного заря­ду маємо, що заряд вихідного атомного ядра (його називають інколи материнським) повинен дорівнювати сумарному заряду утворених при радіоактивному розпаді частинок і нових ядер (їх називають дочірніми). При ядерних перетвореннях величину заряду умовно характери­зують зарядовим числом Z, яке дорівнює відношенню заряду ядра (частинки) q до елементарного заряду е: Z = q/e. Так, для всіх ізотопів урану зарядове число дорівнює Z = 92, а для ізотопів гелію і для a-частинки Z = 2. Тому закон збереження електричного заряду при радіоактивному роз­па­ді можна подати в наступному формулюванні: сума зарядо­вих чисел дочірніх ядер і частинок, які утворилися при розпаді, дорівнює зарядовому числу вихідного (мате­ринсь­кого) ядра.

Закон збереження маси при радіоактивному розпаді з врахуванням формули Ейнштейна Е = mc2, що зв’язує масу m і енергію Е, можна записати у вигляді:

Мя = , (10.15)

де Мя – маса вихідного (материнського) ядра, Мі – маса утвореного (дочірнього) ядра і частинок, Е – енергія, що виділяється при радіоактивному розпаді.

Типові значення енергії, що виділяється при різних радіоактивних розпадах, не перевищують декількох МеВ (так, при a-розпаді ядра полонія виділяється 5.3 МеВ, при a-розпаді ядра радону – 5.5 МеВ, при b-розпаді ядра – 4.8 МеВ). Ці значення енергії Е значно менші за енергію 931.2 МеВ, що відповідає 1 атомній одиниці маси (а.о.м.) = 1.66×10–27 кг. В такому наближенні (Е/с2 <<
1 а.о.м.) закон збереження маси формулюється через масові числа (масове число М – це відношення маси ядра або частинки до а.о.м) наступним чином: сума масових чисел дочірніх ядер і частинок, які утворюються при радіо­активному розпаді, дорівнює масовому числу вихідного (материнського) ядра.

Оскільки при a-розпаді із вихідного (материнського) ядра вилітає ядро гелія , тобто частинка з зарядовим числом 2 і масовим числом 4, то нове утворене дочірнє ядро буде мати зарядове число на дві одиниці менше і масове число на чотири одиниці менше, ніж у вихідного ядра. Позначивши материнське (вихідне) ядро символом Х, а дочірнє (утворене) – символом У, запишемо процес a-розпаду у вигляді схеми:

. (10.16)

Зарядове число визначає місце (номер) елементу в періодичній системі Менделєєва, тому із схеми (10.16) виходить, що в результаті a-розпаду утворюється ядро елемента, який стоїть в періодичній системі Менделєєва на два місця раніше, ніж вихідне ядро.

При b-розпаді із ядра вихідного елемента вилітає електрон або позитрон. Маса електрона у 1836 разів менша маси атому водню, тому масове число електрона приймають рівним нулю. Заряд електрона чисельно дорівнює заряду протона, але цей заряд від’ємний. Тому зарядове число електрона Z = –1. Відповідно, масове число позитрона дорівнює, як і у електрона, нулю, а зарядове число Z = 1.

В зв’язку з викладеним схеми електронного і позитрон­ного b-розпадів будуть мати вигляд

, . (10.17)

Таким чином, в результаті електронного і позитронного b-розпаду утворюються ядра елементів, які розташовані в періодичній таблиці Менделєєва на наступному (поперед­ньому) місці по відношенню до вихідного елемента.

Формули (10.16) і (10.17) називають правилами змі­щен­ня.Вони дозволяють розібратися у всіх послідовних пере­тво­реннях ядер, які відбуваються в процесі їх радіо­активного розпаду .

Швидкості, з якими a-частинки вилітають із ядра, типово є дуже великі (~107 м/с), а кінетична енегія a-частинок порядку декількох МеВ. Кінетична енергія a-частинок виникає за рахунок надлишку енергії спокою материнського ядра над сумарною енергією спокою дочір­нього ядра і a-часточки. Ця надлишкова енергія розподі­ляєть­ся між a-частинкою і дочірнім ядром у відношенні, обернено пропорційному їх масам. Енергія a-частинок, які випускаються даною радіоактивною речовиною, є жорстко визначеною. Тому енергетичний спектр a-частинок є лінійчастий.

У більшості випадків радіоактивна речовина випускає декілька груп “моноенергетичних” a-частинок. Це обумов­ле­но тим, що дочірнє ядро може виникати як в нормаль­ному (незбудженому), так і в збудженому стані. Переходячи в нормальний або більш низький збуджений стан, дочірнє ядро випускає g-фотон. Через це a-розпад може супровод­жуватися g-випромінюванням. Утворене в результаті a-розпаду збуджене ядро може віддати надлишок енергії безпосередньо (без попереднього випускання g-кванта) одному із електронів К-, L- або М- шару атому, в результаті чого електрон вилітає з атому. Цей процес називають внут­рішньою конверсією. Утворене в результаті вильоту елект­ро­на вакантне місце буде заповнюватися електронами з вище розташованих енергетичних рівнів. Тому внутрішня конверсія завжди супроводжується випусканням характе­рис­тичних рентгенівських променів.

Бета-частинки (електрони і позитрони), які випромі­ню­ють­ся при радіоактивному b-розпаді, володіють різними значеннями енергії від 0 до Еmax (мал. 10.6). Випроміню­ван­ня такого енергетичного спектру b-частинок відіграло важливу роль в поясненні природи b-розпаду, про що вже говорилося в параграфі 10.2.1.

Загальні властивості b-спектрів: неперервність і наявність максимальної енергії Еmax – верхньої границі b-спектру. Бета-випромінювання з енергією від 0.05 МеВ до Еmaxназивають м’яким, а від Еmax до декількох МеВ – жорстким. Максимальна швидкість b-частинок у випадку жорсткого b-випромінювання наближається до швидкості світла і має бути розрахованою за формулами спеціальної теорії віднос­ності А. Ейнштейна.

Безпосередній експериментальний доказ існування нейт­ри­но і антинейтрино було отримано лише в 1956 р., приблизно через чверть століття після його теоретичного відкриття В. Паулі та Е. Фермі. Нейтрино було відкрито
Р. Девісом, який реалізував теоретичну ідею Б. Понтекорво, в реакції перетворення хлору в аргон:

, (10.18)

а антинейтрино Ф. Райнісом і К Коеном в реакції перетво­рен­ня протона в нейтрон

. (10.19)

Нейтрино і антинейтрино, які беруть участь в ядерних реакціях (10.5), (10.6) і (10.18), (10.19) називаються ел­ек­трон­­ними (інколи їх позначають через ne і ). Відомі ще інші типи нейтрино і антинейтрино – мезонні (nm і ), тау (nt і ). Принципово важливим з точки зору проблеми еволюції Всесвіту є питання про нульову або ненульову масу спокою нейтрино. Якщо нейтрино має ненульову масу спокою (для цього зараз є певні експериментальні підстави), то згідно з сучасною космологією – наукою про еволюцію Всесвіту – галактики, які в наш час розбігаються внаслідок розши­рення Всесвіту, через деякий час (зрозуміло, дуже великий в масштабі тривалості життя окремої людини) почнуть збіга­тися. Це означає, що Всесвіт буде поступово стискатися і такий процес, згідно з загальними законами термодинаміки, буде супроводжуватися зростанням серед­ньої густини і температури речовини у Всесвіті.

Оцінка віку організмів через вимірювання концентра­ції радіовуглецю. Під дією нейтронів космічного випромі­ню­вання в повітрі з азоту постійно утворюється ізотоп вугле­цю за реакцією

. (10.20)


Цей ізотоп є b-активним з періодом напіврозпаду
Т1/2 » 5600 років. Через радіоактивні властивості ізотопу його називають радіовуглецем. За проміжок часу dt внаслідок реакції (10.20) з азоту повітря в одиниці об’єму утворюється певна кількість радіоактивних ядер . І за той же час внаслідок радіоактивного розпаду кількість ядер зменшується на величину dN = –l N dt. Виявляється, що ці два процеси (збільшення радіо­вугле­цю під дією космічного випромінювання і його зменшення через радіоактивний b-розпад) взаємно компен­су­ють один одного, тобто виконується умова dN+ = dN. Внаслідок цього в різних місцях земної кулі середня концентра­ція радіо­вуглецю однакова. Вона відповідає такій активності, при якій на кожний грам радіовуглецю відбувається 14 розпадів за хвилину.

Радіовуглець засвоюється при фотосинтезі рослинами і бере участь в колообігу речовин в природі. Поки органічна речовина жива, зменшення в ньому через b-розпад від­нов­люється за рахунок участі в колообігу речовин в приро­ді. В момент смерті організму надходження радіо­вуглецю із навколишнього середовища зупиняється, і кон­цент­ра­ція починає спадати за законом радіо­активного розпаду. Вимірявши концентрацію в залишках організ­мів (в деревині, кістках тощо) можна визначити дату їх смерті або, як говорять, їх вік.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.