Здавалка
Главная | Обратная связь

Энергетика экосистем



ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

 

Кафедра экологии и биологии

 

 

КОНТРОЛЬНАЯ РАБОТА

ПО ЭКОЛОГИИ

 

 

Выполнила: Морозова Н.А.

заочное отделение ИЭиФ

108 группа

шифр 053

 

Проверил: доц. Бобренко И.А.

 

Омск 2015

 

Содержание

1(2). История экологии-----------------------------------------------------------------------3

2(26). Межвидовые биотические факторы.----------------------------------------------4

3(38). Энергетика экосистемы. Трофическая структура экосистем.----------------6

4(50). Ноосфера как последняя стадия развития биосферы.-------------------------10

5(63). Влияние загрязнителей окружающей среды на здоровье человека.-------11

6(74). Гигиеническое нормирование химических веществ в продуктах

питания ----------------------------------------------------------------------------------------15

7(87). Охраняемые природные территории.---------------------------------------------16

Список рекомендуемой литературы------------------------------------------------------18

 

1(2). История экологии.

Экология (от греч. «ойкос» – дом, жилище и «логос» – наука) – наука, изучающая закономерности существования, формирования и функционирования биологических систем всех уровней, от организмов до биосферы, их взаимодействие со средой обитания. Термин и его определение ввел выдающийся немецкий биолог Э. Геккель в 1866 г.

Наука экология сформировалась не сразу и имела длительную предысторию развития. Ее обособление представляет собой естественный этап роста знаний о природе.

Термин «экология» ввел известный немецкий зоолог Э. Геккель (1834–1919), который в своих трудах «Всеобщая морфология организмов» (1866) и «Естественная история миротворения» (1868) впервые попытался дать определение сущности новой науки. Слово «экология» происходит от греческого слова oikos, что означает «жилище», «местопребывание», «убежище». Э. Геккель определял экологию как «общую науку об отношениях организмов к окружающей среде, куда мы относим в широком смысле все условия существования. Они частично органической, частично неорганической природы, но как те, так и другие имеют весьма большое значение для форм организмов, так как принуждают приспосабливаться к себе». По Э. Геккелю, экология представляет собой науку о «домашнем быте» живых организмов, она призвана исследовать «все те запутанные взаимоотношения, которые Дарвин условно обозначил как «борьбу за существование». Среди других названий новой науки в XIX в. часто употреблялось название «экономия природы». Этот термин подчеркивал проблему естественного баланса, «равновесия видов», которая и сейчас является одним из важнейших вопросов экологии.

Ч. Дарвин вычленил три основных направления в борьбе за существование организмов: отношения с физической средой, с особями своего вида, с особями других видов. Выживают и дают потомство не все родившиеся особи, а лишь те, которые способны выдержать напор среды. Теорией естественного отбора Ч. Дарвин переключил внимание со связей «организм – среда» на то, что происходит среди множества организмов в борьбе за существование. Тем самым он фактически заложил основы популяционного мышления, однако в зарождавшейся экологии эти идеи получили развитие только в XX в.

Экология оформилась как самостоятельная наука на рубеже ХIХ и ХХ веков, однако во многих более ранних исследованиях ученые уделяли внимание взаимоотношениям организмов с окружающей средой. Изучая историю возникновения и развития экологии как науки, необходимо отметить, что вклад в ее становление внесли как зарубежные ученые – А. Гумбольдт, Ч. Дарвин, Э. Геккель, А. Тенсли и др., так и отечественные - В.В. Докучаев, К.Ф. Рулье, Г.Ф. Морозов, В.Н. Сукачев, В.И. Вернадский и многие другие.

2(26). Межвидовые биотические факторы.

Действие, оказываемое одним видом на другой, обычно осуществляется через прямой контакт между особями, которому предшествуют или сопутствуют изменения среды обитания, вызываемые жизнедеятельностью организмов (химические и физические изменения среды, вызываемые растениями, дождевыми червями, одноклеточными, грибами и т. п.).

Взаимодействие популяций двух или нескольких видов имеет разнообразные формы проявления, как на положительной, так и на отрицательной основе.

Отрицательные межвидовые взаимодейcтвия

  • Межвидовая конкуренция за пространство, пищу, свет, убежище и т. п., т. е. любое взаимодействие между двумя или более популяциями, которое вредно сказывается на их росте и выживании. Если два вида вступают в конкуренцию за общие для них условия, один из них вытесняет другой. С другой стороны, два вида могут существовать, если их экологические требования различны.
  • Хищничество - форма взаимоотношений между организмами, при которой одни добывают, убивают и поедают других. Хищниками являются насекомоядные растения (росянка, венерина мухоловка), а также представители животных всех типов.
  • Паразитизм - форма антагонистических взаимоотношений двух организмов разных видов, когда один из этих организмов (паразит) использует другого (хозяин) в качестве источника питания и среды обитания находясь внутри или на поверхности его тела. Паразиты питаются переваренной пищей или тканями хозяина.
  • Антибиоз - форма антагонистических взаимоотношений организмов, когда один из них угнетает жизнедеятельность других чаще всего выделением особых веществ, так называемых антибиотиков и фитонцидов. Различают формы антибиоза:

a. Аменсализм - взаимоотношения, при которых один вид создает отрицательные условия для другого, однако сам при этом не испытывает противодействия.

b. Aллелопатия - взаимодействие растительных организмов в фитоценозах - химическое взаимовлияние одних видов растений на другие посредством специфически действующих корневых выделений, продуктов метаболизма надземной части (эфирных масел, гликозидов, фитонцидов, которые объединяются единым термином - калины).

Положительные межвидовые взаимодействия

  • Симбиоз (мутуализм) - форма взаимоотношений организмов разных систематических групп, при которой совместное существование взаимовыгодно для особей двух или более видов. Симбионтами могут быть лишь растения, растения и животные или только животные. Симбиоз различают по степени соединения партнеров и по их пищевой зависимости друг от друга.

Межвидовая взаимопомощь играет большую роль в борьбе за существование. Примером могут быть птицы (сороки), предупреждающие об опасности крупных копытных; птицы, уничтожающие личинок-паразитов под кожей буйволов; птицы, очищающие пасть крокодилов от пиявок. В растительном мире это взаимосвязи между энтомофильными растениями и насекомыми-опылителями.

Биотические факторы, влияющие на растительные организмы как первичные продуценты органического вещества, классифицируют на

1. зоогенные факторы - фитофагия, энтомофилия, зоохория, зоогамия, орнитофилия, мирмекохория, т. е. многообразные формы влияния животных организмов на образ жизни, размножение и свойства растений.

2. фитогенные факторы - растения, обычно входящие в состав растительных сообществ, испытывают многообразные влияния соседних растений и при этом сами оказывают воздействие на сообитателей.

3. антропогенные факторы - факторы среды, связанные с деятельностью человека и оказывающие влияние на живые организмы. Эти факторы наиболее значимы по своим масштабам и характеру

3(38). Энергетика экосистемы. Трофическая структура экосистем.

Энергетика экосистем

Живые организмы, входящие в экосистемы, для своего суще­ствования должны постоянно пополнять и расходовать энергию. Растения, как известно, способны запасать энергию в химических связях в процессе фотосинтеза или хемосинтеза. При фотосинтезе связывается только энергия с определенными длинами волн -380-710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спек­тра. На эту радиацию обычно приходится около 40% общей сол­нечной радиации, достигающей земной поверхности. Остальная часть спектра относится либо к более короткой (ультрафиолето­вой), либо к более длинной (инфракрасной) радиации. С последней обычно связан тепловой эффект.

Растения в процессе фотосинтеза связывают лишь небольшую часть солнечной радиации. Даже по отношению к фотосинтетичес­ки активной - это в среднем для земного шара менее 1%. Только наиболее продуктивные экосистемы, такие как плантации сахарно­го тростника, тропические леса, посевы кукурузы, в оптимальных условиях могут связывать до 3-5% ФАР. В опытах с кондициони­рованными условиями по всем факторам среды за короткие перио­ды времени удавалось достичь эффективности фотосинтеза по ус­воению солнечной энергии порядка 8-10% ФАР.

Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспе­чение (движение, поддержание температуры тела и т. п.). Эту часть энергии рассматривают как траты на дыхание, с которым, в конеч­ном счете связаны все возможности ее высвобождения из химических связей органического вещества.

Часть энергии переходит в тело организма-потребителя вместе с увеличивающейся массой (приростом, продукцией). Некоторая доля пищи, а вместе с ней и энергия не усваиваются организмом. Они выводятся в окружающую среду вместе с продуктами жизне­деятельности (экскрементами). В последующем эта энергия выс­вобождается другими организмами, которые потребляют продук­ты выделения.

Баланс пищи и энергии для отдельного животного организма можно, таким образом, представить в виде следующего уравне­ния:

Эп = Эдпрп.в ,

где Эп - энергия потребленной пищи, Эд - энергия дыхания или обеспечения жизнедеятельности организма, включая движение, поддержание температуры тела, сердцебиение и т. п., Эпр - энер­гия прироста (запасенная в теле организма-потребителя), Эп.в - энер­гия продуктов выделения (в основном экскрементов).

Количество энергии, расходуемой организмами на различные цели, неоднозначно. В периоды интенсивной жизнедеятельности взрослого организма в теле его может совершенно не фиксироваться энергия. Наоборот, траты ее в ряде случаев превышают поступле­ние (организм теряет вес). В то же время в периоды интенсивного роста организмов, особенно в периоды размножения (беременнос­ти), в теле фиксируется значительное количество энергии.

Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выде­ляют с экскрементами до 70% энергии. Однако при всем разнооб­разии расходов энергии в среднем максимальны траты на дыха­ние, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энер­гии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило десяти процентов».

Данное правило надо оценивать как относительное, ориентиро­вочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной.

Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной про­дукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энер­гии. Особенно велики потери энергии при переходе с первого тро­фического уровня на второй, от растений к травоядным животным.

Часто в экологической литературе рассматривается в качестве примера цепь питания: люцерна-телята-мальчик. Показано, что если бы мальчик весом 48 кг питался только телятиной, то за год ему потребовалось бы для обеспечения жизнедеятельности 4,5 те­ленка, для питания которых, в свою очередь, необходим урожай люцерны с площади 4 га весом 8211 кг. Такова энергетическая цена животной пищи.

Во-вторых, чтобы сократить вероятность дефицита продуктов питания для интенсивно возрастающей численности населения (по закономерности, близкой к экспоненте), надо, чтобы в рационе лю­дей больший удельный вес занимала растительная пища. Энерге­тически идеально - вегетарианство.

В-третьих, для увеличения КПД использования пищи при полу­чении животноводческой продукции в условиях культурного хозяй­ства очень важно уменьшить основную статью нерационального расходования энергии - ее траты на дыхание. Это возможно за счет поддержания оптимального температурного режима в животновод­ческих помещениях, ограничения подвижности животных и, есте­ственно, сбалансированности кормового рациона по различным эле­ментам питания, а также применения различных биотехнических приемов (умеренные добавки стимуляторов роста, веществ, спо­собствующих улучшению аппетита и т. п.).

Трофическая структура.

Виды, входящие в состав экосистемы, связаны между собой пищевыми связями, так как служат объектами питания друг для друга.

В водоеме продуцентами являются зеленые водоросли. Их поедают мелкие растительноядные ракообразные (дафнии, циклопы) - консументы (потребители) первого порядка. Этих животных потребляют в пищу плотоядные личинки различных водяных насекомых (например, стрекоз). Это консументы (потребители) второго порядка. Личинками питаются мелкие рыбы (например, плотва) - консументы (потребители) третьего порядка. А рыбы становятся добычей щуки - консумента (потребителя) четвертого порядка. Такую последовательность питающихся друг другом организмов называют пищевой, или трофической, цепью. Отдельные звенья трофической цепи называют трофическими уровнями.

Различают два типа трофических (пищевых) цепей. Пищевые цепи, которые начинаются с растений, идут через растительноядных животных к другим потребителям, называют пастбищными или цепями выедания. Их примеры приведены выше. Пищевые цепи другого типа начинаются с отмерших растений, трупов или помета животных и идут к мелким животным и микроорганизмам. Эти цепи называютдетритными, или цепями разложения. Например: мертвые ткани растений грибы многоножки кивсяки грибы ногохвостки коллемболы хищные клещи хищные многоножки бактерии.

Линейные пищевые цепи - большая редкость в природе. Как правило, пищевые цепи в экосистеме тесно переплетаются. Совокупность пищевых связей в экосистеме образует пищевые сети, в которых многие консументы служат пищей нескольким членам экосистемы. В то же время некоторые животные могут принадлежать сразу к нескольким трофическим уровням, так как питаются и растительной, и животной пищей, то есть являются всеядными (например, медведь).

4(50). Ноосфера как последняя стадия развития биосферы.

Ноосфера – «мыслящая оболочка», сфера разума; согласно
В.И. Вернадскому – качественно новая, высшая стадия развития биосферы под контролем разумной деятельности человека.

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного». Сфера взаимодействия общества и природы, в пределах которой разумная деятельность предстает главным, определяющим фактором развития биосферы и человечества, называется ноосферой.

Впервые термин "ноосфера" в 1926 – 1927 гг. употребили французские ученые Э. Лекруа (1870 – 1954) и П. Тейяр де Шарден (1881 – 1955) в значении "новый покров", "мыслящий пласт", который, зародившись в конце третичного периода, разворачивается вне биосферы над миром растений и животных. В их представлении ноосфера – идеальная, духовная ("мыслящая") оболочка Земли, возникшая с появлением и развитием человеческого сознания.
Заслуга наполнения данного понятия материалистическим содержанием принадлежит академику В. И. Вернадскому (1965, 1978).

В представлении В. И. Вернадского, человек – часть живого вещества, подчиненного общим законом организованности биосферы, вне которой оно существовать не может. Ноосфера представляет собой качественно новый этап эволюции биосферы, в котором создаются новые формы ее организованности как новое единство, возникающее в результате взаимодействия природы и общества. В ней законы природы тесно переплетаются с социально-экономическими законами развития общества, образуя высшую материальную целостность "очеловеченной природы".

В. И. Вернадский, предугадавший наступление эпохи научно-технической революции в XX веке, основной предпосылкой перехода биосферы в ноосферу считал научную мысль. Материальным ее выражением в преобразуемой человеком биосфере является труд. Единство мысли и труда не только создает новую социальную сущность человека, но и предопределяет переход биосферы в ноосферу.

5(63). Влияние загрязнителей окружающей среды на здоровье человека.

В таблице 1 представлен общий список заболеваний, связанных с загрязнением атмосферного воздуха.

Таблица 1. Список заболеваний, связанных с загрязнением атмосферного воздуха

Патология Вещества, вызывающие патологию
Болезни системы кровообращения окислы серы, окись углерода, окислы азота, сернистые соединения, сероводород, этилен, пропилен, бутилен, жирные кислоты, ртуть, свинец
Болезни нервной системы и органов чувств хром, сероводород, двуокись кремния, ртуть
Болезни органов дыхания пыль, окислы серы и азота, окись углерода, сернистый ангидрид, фенол, аммиак, углеводород, двуокись кремния, хлор, ртуть
Болезни органов пищеварения сероуглерод, сероводород, пыль, окислы азота, хром, фенол, двуокись кремния, фтор
Болезни крови и кроветворных органов окислы серы, углерода, азота, углеводорода, азотисто-водородная кислота, этилен, пропилен, сероводород
Болезни кожи и подкожной клетчатки фторосодержащие вещества
Болезни мочеполовых органов сероуглерод, двуокись углерода, углеводород, сероводород, этилен, окись серы, бутилен, окись углерода

Таблица 2. Влияние отработанных газов автомобилей на организм человека

Вредные вещества Последствия воздействия на организм
Оксид углерода СО Препятствует адсорбированию кровью кислорода, что ослабляет мыслительные способности, замедляет рефлексы, вызывает сонливость и может быть причиной потери сознания и смерти.
Свинец Влияет на кровеносную, нервную и мочеполовую системы. Вызывает снижение умственных способностей у детей, откладывается в костях и других тканях, поэтому опасен в течении длительного времени.
Оксиды азота NO, NO2, N2O4 Могут увеличивать восприимчивость организма к вирусным заболеваниям, раздражают легкие, вызывают бронхит и пневмонию.
Углеводороды Приводят к росту легочных и бронхиальных заболеваний. Полициклические ароматические углеводороды (ПАУ) обладают канцерогенным действием
Альдегиды Раздражают слизистые оболочки, дыхательные пути, поражают ЦНС.
Сернистые соединения Оказывают раздражительное действие на слизистые оболочки горла, носа и глаз человека.
Пыльные частицы Раздражают дыхательные пути.

Уран – широко распространенный в природных водах радиоактивный элемент. Особенно большие его концентрации могут встречаться в подземных водах. В основу нормирования урана положены не его радиоактивные свойства, а токсическое влияние как химического элемента. Допустимое содержание урана в питьевой воде равно 1,7 мг/л.

Кадмий накапливаясь в почках, вызывает гипертонию, ослабляет иммунитет организма, оказывает негативное воздействие на умственные способности человека, т.к. вытесняет необходимый для нормальной работы мозга цинк.

Алюминий, накапливаясь в организме, может стать причиной старческого слабоумия, повышенной возбудимости, вызвать нарушения моторных реакций у детей, анемию, головные боли, заболевание почек, печени, колиты, неврологические изменения, связанные с болезнью Паркинсона.

Строго регламентируется и предельно допустимая концентрация в воде некоторых добавок, применяемых для осветления воды (например, полиакриламида, сернокислого алюминия).

Существует такой показатель как перманганатная окисляемость (норматив 5 мг О2/л, не более, это общая концентрация кислорода, соответствующая количеству иона перманганата (МnО4-), потребляемому при обработке данным окислителем пробы воды), который характеризует меру наличия в воде органических (бензин, керосин, фенолы, пестициды, гербициды, ксилолы, бензол, толуол) и окисляемых неорганических веществ (соли железа (2+), нитриты, сероводород). Органические вещества, обусловливающие повышенное значение перманганатной окисляемости, отрицательно влияют на печень, почки, репродуктивную функцию, а также на центральную нервную и иммунную системы человека. Вода, имеющая перманганатную окисляемость выше 2 мг О2/л, не рекомендуется к употреблению.

Токсичность вышеназванных компонентов не настолько велика, чтобы вызвать острое отравление, но при длительном употреблении воды, содержащей упомянутые вещества в концентрациях выше нормативных, может развиться хроническая интоксикация, приводящая в итоге к той или иной патологии. Следует учитывать также, что токсическое воздействие веществ может проявляться не только при оральном (через рот) поступлении их с водой, но и при всасывании через кожу в процессе гигиенических (душ, ванна) или оздоровительных (плавательные бассейны) процедур.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.