Здавалка
Главная | Обратная связь

Образование p-n-перехода



p – n переходом называют область, находящуюся на границе раздела между дырочной и электронной областями одного кристалла.

Рассмотрим процесс образования p-n-перехода при контакте p- и n-полупроводников.

1. В исходном состоянии (до контакта) p- и n-полупроводники бы­ли электрически нейтральными: заряд основных носите­лей в каждом полупроводнике компенсировался зарядом ионов при­меси и неосновных носителей.

2. При контакте полупроводников, так как ( ), ( ) появля­ется градиент концентрации дырок и электронов.

3. Градиент концентрации вызовет диффузионное движение ды­рок из приконтактного слоя р-полупроводника в n-полупроводник, а градиент концентрации электронов – диффузионное движение электронов из приконтактной области n-полупроводника в р-полупроводник (рис. 3.3,а).

4. Уход основных носителей приводит к нарушению электричес­кой нейтральности в приконтактных областях: в р-полупроводнике окажется нескомпенсированный отрицательный заряд неподвижных акцепторных ионов (обозначены знаком «ми­нус» в квадратной рамке), а в n-полупроводнике – нескомпенсиро­ванный положительный заряд неподвижных донорных ионов (обоз­начены знаком «плюс» в квадратной рамке).

Кроме того, носители, перешедшие в другой полупроводник, должны рекомбинировать с основными носителями этого полу­проводника. Гибель основных носителей при рекомбинации также приведет к нарушению электрической нейтральности и увеличе­нию нескомпенсированных зарядов ионов слева и справа от плос­кости контакта.

Итак, вблизи плоскости контакта образуется двойной электриче­ский слой, а следовательно, появляется напряженность электричес­кого поля Е (рис. 3.3,б).

5. Появившееся электрическое поле является тормозящим (соз­дает потенциальный барьер) для диффундирующих через контакт основных носителей каждого полупроводника. Поэтому по мере рос­та поля, создающего потенциальный барьер, его смогут преодоле­вать только те основные носители, которые имеют достаточную энергию (больше высоты барьера).

Таким образом, будет происходить уменьшение диффузионных потоков основных носителей по сравнению с начальным.

6. Однако появившееся электрическое поле Е является ускоря­ющим для неосновных носителей каждого полупроводника (отсутст­вие барьера). Под действием ускоряющего поля должны появиться дрейфовые потоки неосновных носителей: электронов из р-области в n-область и дырок из n-области в р-область (на рис. 3.3,в показаны штриховыми линиями).

7. Начавшийся рост электрического поля в переходе, а, следова­тельно, уменьшение диффузионных потоков и рост дрейфовых по­токов будут происходить до тех пор, пока при некотором значении напряженности поля не наступит равновесие: диффузионный по­ток дырок из р-области сравняется со встречным дрейфовым пото­ком дырок из n-области, а диффузионный поток электронов из n-об­ласти уравновесится встречным дрейфовым потоком электронов из р-области. Это равновесное значение на­пряженности электрического поля Ек соот­ветствует разности потенциалов кото­рую называют контактной разностью потенциалов или диффузионным потен­циалом (рис. 3.3.г).

Образовавшаяся переходная об­ласть вблизи плоскости контакта, в которой нескомпенсирован­ные заряды ионов создают поле и которая из-за ухода и реком­бинации бедна подвижными носителями заряда, называется р-п-переходом или обедненным слоем.

Контактная разность потенциалов определяется отношением концентрации носителей с одним знаком заряда: основных в одной области структуры и неосновных – в другой.

Прямое и обратное напряжение.

Неравновесное состояние р-n-перехода наступает при подаче внешнего напряжения U и характеризуется протеканием тока через переход. Сопротивление обедненного слоя значительно выше со­противления нейтральных областей, поэтому внешнее напряжение U практически оказывается приложенным к самому обедненному слою и влияет на величину потенциального барьера. В зависимости от полярности напряжения U потенциальный барьер может возрас­тать или уменьшаться.

Принято называть напряжение на р-n-переходе прямым, если оно понижает барьер. Это будет в том случае, если плюс источника питания присоединен к р-области, а минус – к n-области. Потенци­альный барьер при прямом напряжении

Внешнее поле складывается с контактным полем и потенциаль­ный барьер возрастает, если плюс источника присоединяется к n-области. Такое напряжение называется обратным и считается отрицательным. Потенциальный барьер в этом случае

При прямом на­пряжении из-за сни­жения потенциаль­ного барьера нару­шается равенство диффузионного и дрейфового потоков как дырок, так и электронов: диффу­зионный поток ды­рок из р-области в n-область преобла­дает над встречным дрейфовым потоком дырок из n-области, а диффузия электронов из n-области в р-область над встречным дрейфом электронов из р-области. В результате происходит увеличение концентрации не­основных носителей вне перехода в р- и n-областях. Этот процесс называется инжекцией неосновных носителей.

При обратном напряжении из-за увеличения потенциального барьера происходит ослабление диффузионных потоков по сравне­нию с состоянием равновесия. Уже при сравнительно небольшом обратном напряжении (порядка десятых долей вольта) диффузионный поток становится настолько малым, что дрейфовые потоки на­чинают преобладать над диффузионными. В результате дрейфа не­основных носителей происходит уменьшение концентраций неос­новных носителей у границ перехода: электронов в р-области и ды­рок в л-области. Это явление называется экстракцией (выведени­ем) неосновных носителей.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.