Здавалка
Главная | Обратная связь

Движение тела, брошенного под углом к горизонту. Законы подобия



Рассмотрим эту известную задачу с учетом сопротивления воздуха. Будучи брошенным под углом α к горизонту с начальной скоростью v0, тело летит, если не учитывать сопротивления воздуха, по параболе, и через некоторое

- безразмерные расстояния по осям и время, - то при отсутствии сопротивления воздуха эти переменные будут изменячься в диапазоне от 0 до 1, а в задаче с учетом сопротивления отличия их максимальных значений от единицы ясно характеризуют влияние этого сопротивления. Для скоростей естественно ввести безразмерные переменные, соотнося проекции скорости на оси x и у с начальной скоростью v0:

Покажем, как перейти к безразмерным переменным в одном из наших уравнений, например, во втором уравнении системы (7.12). Имеем:

(так как постоянный множитель можно вынести за знак производной). Подставляя это в уравнение, получаем

или

Подставляя

получаем

где безразмерные комбинации параметров, входящих в исходные уравнения,

Выполним обезразмеривание во всех уравнениях (7.12), (7.13) (рекомендуем читателям проделать эту процедуру самостоятельно). В результате получим

(7.14)

Начальные условия для безразмерных переменных таковы:

Важнейшая роль обезразмеривания - установление законов подобия. У

End.}{следующий блок - для изображения траекторий при нескольких наборах параметров) Begin DetectGraph (J, M); InitGraph (J, M, '');

L := 1; Al := A; Bl := В; Sinus := Sin(Al); Cosinus := Cos(Al);

While L < 5 Do Begin N := 4; (Количество уравнений в системе)

Х0 := 0; Y0[l] := Cosinus; (Начальные условия}

Y0[2] := Sinus; Y0[3] := 0; Y0[4] := 0:

SetColor(L); Line(400, 50 + 20 * (L - 1), 440, 50 + 20 * (L - 1));

OutTextXY(450, 50 + 20 * (L - 1), '1 = ');

Str(L, LS); OutTextXY(480, 50+20*(L-l), LS); X:=X0; Y[4]:=Y0[4];

While Y[4] >= 0 Do

Begin Runge_Kut(N, X, Y0, Y, H); Y0 := Y;

PutPixel(Abs(Trunc(Y0[3]*500)), GetMaxY-Abs(Trunc(Y0[4]*500)), L) ;

End; Bl := Bl * 10; L := L + 1

End; OutTextXY(10, 50, 'для продолжения нажмите любую клавишу');

Repeat Until KeyPressed; CloseGraph End.

 

Приведем пример. Рассмотрим полет чугунного ядра радиуса R=0,07 м, выпущенного с начальной скоростью v0 = 60 м/с под углом α = 45° к поверхности Земли. Определим, какое расстояние пролетит ядро, на какую максимальную высоту оно поднимется, а также проследим, как изменяется скорость полета со временем. Будем решать обезразмеренные уравнения, чтобы сократить число параметров. Вычислим значения параметров а и b, после чего решим систему дифференциальных уравнений. Учтем, что плотность чугуна ρчуг = 7800 кг/м3.

 

 

Расчеты повторялись, сначала с шагом 0,1, затем - вдвое меньшим и т.д. (хорошо известный эмпирический метод контроля точности при пошаговом интегрировании дифференциальных уравнений), пока не был получен приемлемый шаг, при котором достигается точность 10-3. Ясно, что расчеты надо проводить до тех пор, пока ядро не достигнет земли, т.е. пока Y не станет равным 0. Результаты моделирования - на рис. 7.9. В рассмотренном выше примере сопротивление среды оказывает незначительное влияние на движение тела. Проведем сравнение движения одного и того же тела без учета сопротивления среды и с его учетом, если среда достаточно вязкая (рис. 7.10).

Рис. 7.9. Графики зависимости V(τ) и Y(X) при решении задачи о полете ядра.

Безразмерное значение скорости V получается по формуле .

Конечное значение скорости V < 1 вследствие сопротивления воздуха.

Траектория движения не является параболой по той же причине








©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.