Двухслойные обмотки
Наибольшее применение в машинах переменного тока получили двухслойные обмотки, которые дают возможность выбора более благоприятного шага, позволяют уменьшить расход обмоточного провода и изоляции. Для улучшения формы кривой ЭДС и МДС в машинах переменного тока двухслойные обмотки выполняют с укороченным шагом, y < τ. При y ≈ 0,8 τ достигается экономия меди, а уменьшение основной гармоники ЭДС или МДС по сравнению с обмоткой с диаметральным шагом, составляет несколько процентов. На рисунке 5.6 показаны сечения статора СМ с расположением в пазах двухслойных обмоток с диаметральным (рисунок 5.6(б)) и с укороченным (рисунок 5.6(в)) шагами. Развернутые схемы обмоток, соответствующих рисунку 5.6 с катушками петлевого типа, приведены на рисунке 5.7. Для упрощения на рисунке 5. 7(б) и (в) показаны катушки только одной фазы А. Обозначения выводов фазы сделаны в соответствии с требованиями ГОСТ 183-74. По распределению фазных зон обмотки с укороченным шагом видно, что фазные зоны нижнего слоя смещаются относительно фазных зон верхнего слоя на величину (в пазах) τ–y1. Число катушек двухслойной обмотки всегда равно числу пазов, nк = z1. В рассмотренных схемах петлевых обмоток число параллельных ветвей a=p. При p=1, a=1, при 2р=4 петлевые обмотки дают возможность получить две параллельные ветви, при 2р=6 - три и т.д. В многополюсных машинах переменного тока петлевые обмотки имеют большое число соединений между катушечными группами, что увеличивает расход меди и усложняет технологию их изготовления. Если число параллельных ветвей можно выбрать равным одной или двум, целесообразно в многополюсных машинах применять волновую обмотку, в которой лобовые части обеспечивают межкатушечные соединения. Электродвижущая сила в обмотках машин Переменного тока Электродвижущая сила в обмотке электрической машины индуктируется только при условии изменения потокосцепления магнитного поля с витками катушки, что находит отражение в известном соотношении
отражающем закон электромагнитной индукции. Потокосцепление может изменяться под действием различных причин. При вращении витка в магнитном поле или при перемещении магнитного поля относительно неподвижного витка в нем индуктируется ЭДС, которую называют ЭДС вращения. При изменении во времени потока, сцепленного с неподвижным витком, в нем индуктируется так называемая трансформаторная ЭДС. Во всех случаях величина и характер изменения индуктируемой ЭДС определяется величиной и характером изменения потокосцепления и также параметрами витка. Определим ЭДС в одной катушке обмотки статора синхронного генератора, имеющей число витков Wк и диаметральный шаг (рисунок 5.6). Частота индуктируемой в витке ЭДС определяется скоростью вращения и числом пар полюсов ротора. Одному повороту двухполюсного ротора соответствует один период изменения ЭДС. Для того чтобы в двухполюсном СГ получить частоту ЭДС 50 Гц, необходимо вращать ротор со скоростью 50 оборотов в секунду или 3000 оборотов в минуту. При увеличении числа полюсов скорость вращения ротора будет пропорционально уменьшается. В общем случае, если ротор имеет 2р полюсов и вращается со скоростью n об/мин, то частота ЭДС равна
Величину ЭДС вращения удобно определить по соотношению
из которого ясно видна зависимость формы кривой ЭДС от характера распределения магнитной индукции на полюсном делении. Одно из основных требований, предъявляемых к генераторам переменного тока, заключается в обеспечении синусоидальности изменения во времени ЭДС, индуктируемой в обмотке статора, т.е. в обеспечении зависимости
Как отмечалось выше, в СГ это достигается за счет создания в воздушном зазоре между статором и ротором синусоидального (или близкого к синусоидальному) распределения магнитной индукции по ширине полюсного деления. Практически распределение поля в зазоре всегда отличается от синусоидального, что связано как с несинусоидальностью распределения МДС (особенно в неявнополюсном роторе, так и с наличием зубцов на статоре, насыщением и т.д. Следовательно, и ЭДС в обмотках также несинусоидальна.Для упрощения расчетов и анализа физических процессов в электрических машинах несинусоидальную кривую магнитной индукции представляют в виде гармонического ряда синусоидальных кривых, в который кроме первой (основной) гармоники B1 входят высшие гармонические порядка 3, 5, 7 (В3, В5 В7) и т.д. (рисунок 5.8) и считают, что каждая из этих гармоник индуктирует в обмотке синусоидальную ЭДС соответствующего порядка. Рассмотрим величину ЭДС в проводнике от первой гармоники магнитной индукции
где в соответствии с соотношением (5.6)
Полный магнитный поток от 1-й гармоники магнитной индукции равен (рисунок 5.8,а)
откуда получаем
Окружная скорость вращения ротора равна
Рисунок 5.7 – Принцип построения трехфазных обмоток машин ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|