Здавалка
Главная | Обратная связь

Тема. Уніполярні транзистори у ІМС



На малюнку 1. схематично зображена будова одного з типів польового транзистора: метал-оксидного (MOSFET), або МОН (метал-оксид-напівпровідник). Струм в транзисторі протікає через канал, що утворено легованою областю напівпровідника, розташованою між підкладкою і затвором. До каналу під'єднані два електроди — витік, що є джерелом носіїв заряду й стік, до якого носії заряду стікаються. Контакти між витоком та стоком і каналом робляться омічними. Для цього приконтактні області сильно легують. Ці області позначені на малюнку

Мал. 56.1 Схема будови метал – оксидного польового транзистора

За принципом дії польовий транзистор дуже схожий на водопровідний кран. Носії заряду протікають через канал, обмежений з одного боку підкладкою, в якій не може протікати струм, бо в ній немає носіїв заряду, та областю збіднення, яка утворюється під затвором завдяки контактній різниці потенціалів. Шириною області збіднення можна керувати, прикладаючи до затвора напругу. При прикладенні зворотної напруги область збіднення розширюється і перекриває більшу частину каналу. В канал наче висувається заслінка. При певному значенні зворотної напруги область збіднення повністю перекриває канал. Струм через канал зменшується. В цьому випадку говорять, що транзистор закритий. Відповідне значення напруги називається напругою запирання. При прикладенні до затвора прямої напруги, канал розширюється, пропускаючи більший струм.

Серед різновидів польових транзисторів можна виділити два основні класи: польові транзистори із затвором у виді p-n переходу та польові транзистори із затвором, який ізольований від робочого напівпровідникового об'єму діелектриком. Прилади цього класу часто також називають МДН транзисторами (від словосполучення метал - діелектрик - напівпровідник) та МОН транзисторами (від словосполучення метал - оксид - напівпровідник), оскільки в якості діелектрика найчастіше використовується діоксид кремнію. В свою чергу транзистори з ізольованим каналом поділяються на транзистори з вбудованим каналом та індукованим каналом.

Також польові транзистори підрозділяються на транзистори з каналом провідності n-типу або p-типу.

Польовий транзистор з керівним p-n переходом - це польовий транзистор, затвор якого ізольований (тобто відокремлений в електричному відношенні) від каналу p-n переходом, зміщеним у зворотньому напрямку.

Такий транзистор має два невипрямлювані контакти до області, по якій проходить керований струм основних носіїв заряду, і один або два керівних електронно-діркових переходи, зміщених у зворотному напрямку. При зміні зворотної напруги на p-n переході змінюється його товщина і, отже, товщина області, по якій проходить керований струм основних носіїв заряду. Область, товщина і поперечний переріз якої управляється зовнішньою напругою на керівному p-n переході і по якій проходить керований струм основних носіїв, називають каналом. Електрод, з якого в канал входять основні носії заряду, називають витоком або джерелом (англ. Source). Електрод, через який з каналу йдуть основні носії заряду, називають стоком (Drain). Електрод, який слугує для регулювання поперечного перетину каналу, називають затвором (Gate).

Електропровідність каналу може бути як n-, так і p-типу. Тому по електропровідності каналу розрізняють польові транзистори з n-каналом і р-каналом. Всі полярності напруг зсуву, що подаються на електроди транзисторів з n-і з p-каналом, протилежні.

Управління струмом стоку, тобто струмом від зовнішнього щодо потужного джерела живлення в колі навантаження, відбувається при зміні зворотної напруги на p-n переході затвора (або на двох p-n переходах одночасно). У зв'язку з малістю зворотних струмів потужність, необхідна для управління струмом стоку і споживана від джерела сигналу в колі затвора, виявляється мізерно малою. Тому польовий транзистор може забезпечити посилення електромагнітних коливань як по потужності, так і по струму і напрузі.

Таким чином, польовий транзистор за принципом дії аналогічний вакуумного тріода. Витік у польовому транзисторі подібний катоду вакуумного тріода, затвор - сітці, стік - аноду. Але при цьому польовий транзистор істотно відрізняється від вакуумного тріода. По-перше, для роботи польового транзистора не потрібно підігріву катода. По-друге, будь-яку з функцій витоку і стоку може виконувати кожен з цих електродів. По-третє, польові транзистори можуть бути зроблені як з n-каналом, так і з p-каналом, що дозволяє вдало поєднувати ці два типи польових транзисторів в схемах.

Від біполярного транзистора польовий транзистор відрізняється, по-перше, принципом дії: в біполярному транзисторі управління вихідним сигналом проводиться вхідним струмом, а в польовому транзисторі - вхідною напругою або електричним полем. По-друге, польові транзистори мають значно більший вхідний опір, що пов'язано із зворотним зсувом p-n-переходу затвора в розглянутому типі польових транзисторів. По-третє, польові транзистори можуть мати низький рівень шуму (особливо на низьких частотах), так як в польових транзисторах не використовується явище інжекції неосновних носіїв заряду і канал польового транзистора може бути відділений від поверхні напівпровідникового кристала. Процеси рекомбінації носіїв в p-n переході і в базі біполярного транзистора, а також генераційно-рекомбінаційні процеси на поверхні кристала напівпровідника супроводжуються виникненням низькочастотних шумів.

Із розробкою технології інтегральних схем польові транзистори майже витіснили біполярні транзистори з більшості галузей електроніки. Понад 100 млн транзисторів у процесорікомп'ютера, за допомогою якого можна прочитати цю сторінку Вікіпедії, є польовими транзисторами. Вони використовуються також у мікросхемах, які входять до складу більшості радіоелектронних приладів: мобільних телефонів, телевізорів, пральних машин, холодильників тощо

Вперше ідея використання ефекту поля (електричного) для модуляції провідності на поверхні напівпровідника була запропонована Лілієнфельдом в середині 20-х років. В другій половині 30-х років Вільям Шоклі спробував її реалізувати на поверхні германію, керівний електрод розділявся за допомогою слюдяної пластинки. Хоч ефект поля і підтвердився експериментально, проте до практичної реалізації справа так і не дійшла. І тільки в 1960 році, коли була розроблена технологія пасивації кремнію (Девон Канг та Мартін Аталла), з'явились перші МДН-транзистори.

 

 

СРС № 57







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.