Здавалка
Главная | Обратная связь

Гармонические колебания и их представление



ИССЛЕДОВАНИЕ ИНТЕГРИРУЮЩИХ

И ДИФФЕРЕНЦИРУЮЩИХ ЦЕПЕЙ

Цель работы: Изучение процесса прохождения сигналов через простейшие RC-цепи. Измерение и вычисление основных параметров, частотных и фазовых характеристик RC-цепей. Освоение вопросов синтеза и анализа радиоэлектронных схем с помощью ЭВМ.

Введение. Теоретическая часть

Основные понятия радиоэлектронных цепей

Радиоэлектронное устройство независимо от конструкции и технологии его изготовления представляет собой некоторое соединение элементов – резисторов, конденсаторов, диодов, источ­ников электрической энергии и др. Совокупность соединенных опре­деленным образом элементов устройства называется радиоэлектронной цепью.

Элементы цепи подразделяются на активные и пассивные. Основной признак активного элемента - это его способность отдавать электрическую энергию. К пассивным элементам относятся потребители и накопители электрической энергии.

В теории цепей рассматриваются идеализированные элементы, обладающие каким-нибудь одним свойством, - это, например, сопротивление, емкость, индуктивность, источники тока и напряжения.

Сопротивление – идеализированный элемент, в котором электри­ческая энергия преобразуется в тепловую, механическую или световую. Сила тока в сопротивлении связана с напряжением на нем законом Ома: U = R i. Величину 1/R = G - называют прово­димостью. Форма тока, проходящего через сопротивление, всегда совпадает с формой приложенного к нему напряжения, поэтому всегда положительна мгновенная мощность Р = U i = R i2 = G U2.

Емкость – идеализированный элемент, обладающий свойством за­пасать энергию электрического поля. Ток в емкости и напряжение на ее зажимах связаны соотношением i = C dU/dt.

Мгновенная мощность Р = U i = UC dU/dt может быть как положительной (когда знаки напряжения и его производной одинаковы), так и отрицательной. Если мощность положительна, то емкость накапливает энергию, а заряд q = CU на нем увеличивается. Если же мощность отрицательна, то емкость разряжается и отдает энергию. Накопленная за промежуток времени t2 – t1 энергия

 

W (t1, t2) = C ∫ U dU/dt dt = С∫UdU = ½ CU2 (t2) – ½ CU2 (t1).

t t

Индуктивность – идеализированный элемент, обладающий способностью запасать энергию магнитного поля. Ток в индуктивности с напряжением на её зажимах связаны соотношением U = L di/dt. Мгновенная мощность на индуктивности

P = U i = L i di/dt, как и для ёмкости может быть положительной и отрицательной.

Каждый элемент к цепи подключается двумя выводами – полюсами, поэтому простейшая электрическая цепь является двухполюсником.

Цепь, в которой выделены вход и выход и, таким образом имеет четыре полюса, называется четырёхполюсником. Цепи, размеры которых значительно меньше длины волны электрических сигналов, считают цепями с сосредоточенными параметрами. В таких цепях сопротивления, ёмкости и индуктивности сосредоточены в отдельных элементах.

Цепи, размеры которых соизмеримы с длинной волны электрических сигналов или больше её, относятся к цепям с распределенными параметрами. Каждый элемент конструкции такой цепи обладает сопротивлением, емкостью, индуктивностью.

По признаку зависимости параметров элементов цепи от приложенных напряжений и протекающих токов различаются линейные и нелинейные цепи.

Радиоэлектронная цепь считается линейной, если параметры ее элементов не зависят от токов и напряжений. Примером линейной цепи может быть цепь, состоящая из идеализированных элементов ни один из которых не зависит от протекающих токов и напряжений.

Цепь считается нелинейной, если параметры ее элементов зависят от токов и напряжений. Такими являются цепи, содержащие элементы сопротивления с нелинейными вольтамперными характеристиками, а также цепи с диодами, транзисторами и конденсаторами в виде p-n – перехода.

Цепи, параметры элементов которых меняются во времени по заданному закону, считаются параметрическими. Такие цепи чаще всего создаются из нелинейных элементов, параметры которых изменяются с помощью управляющих сигналов.

По признаку наличия или отсутствия источников электрической энергии внутри цепи различают активные или пассивные цепи. Активная – это цепь, содержащая внутренние источники энергии, например усилитель. Пассивная - это цепь, не содержащая внутренних источников энергии, например цепь, состоящая только из пассивных элементов – резисторов, конденсаторов, катушек индуктивности.

Задачи теории цепей делятся на две группы: задачи анализа и задачи синтеза. Цель анализа – исследование процессов в цепи с заданной структурой и заданными характеристиками всех элементов цепи, например расчёт реакции заданной цепи на известные воздействия. Цель синтеза – отыскание структуры цепи и параметров её элементов, при которых электрический процесс будет удовлетворять заданным требованиям. Синтез цепей основывается на общих свойствах электрических цепей. Эти свойства выясняются в процессе анализа, поэтому синтезу должен предшествовать анализ.

Задача синтеза значительно более сложная и трудоемкая по сравнению с задачей анализа, поэтому в инженерной практике часто используют нестрогий синтез, заключающийся в выборе нужной цепи из множества подробно исследованных.

 

Гармонические колебания и их представление

 

Электрическое колебание, которое описывается гармоническими (sin и cos) функциями времени, называется гармоническим. Такое колебание можно записать S (t) = Am cos (ωt – φ).

Здесь Am – амплитуда, ωt – φ = θ(t) – фаза. Величину ω = 2πf = 2π/T называют угловой частотой. Гармонические колебания в радиоэлектронике занимают исключительное место благодаря:

- простоте технической реализации генератора;

- неизменности формы гармонических колебаний при прохождении через линейную цепь с постоянными параметрами (меняется только амплитуда и фаза).

Гармоническое колебание полностью характеризуется двумя величинами: амплитудой Am и фазой θ. Как известно, аналогичными величинами определяется положение вектора на плоскости. Используя эту аналогию, гармоническое колебание можно условно изображать вектором на плоскости.

Наряду с векторным представлением гармонические колебания можно представлять комплексными числами. Как известно, комплексное число

a + jb = Am e = Amcos(α) + jAmsin(α)

полностью характеризуется модулем Am и аргументом α, аналогичными амплитуде и фазе гармонического колебания. Комплексное число Ám = Ame­jφ называют комплексной амплитудой гармонического колебания.

Метод расчета цепей, базирующихся на понятии комплексной амплитуды, называют методом комплексных амплитуд. Метод комплексных амплитуд в электротехнике впервые в 1883 году применил немецкий ученый Ч.Штейнмец. В России этот метод широко использовал академик В.Ф. Миткевич.

Переход от временной функции к комплексной амплитуде обратим: S(t) = Amcos(ωt – φ) Û . Очевидно, что при всех математических преобразованиях, где вещественная и мнимая части комплексного числа преобразуются независимо одна от другой, этот метод может быть использован без каких-либо ограничений. Примерами таких математических операций, называемых линейными, являются сложение, вычитание, умножение на постоянную величину, дифференцирование и интегрирование.

Операции умножения и деления являются нелинейными. Для получения правильного результата приходится использовать искусственный прием: один из переменных множителей брать комплексно сопряженным. Примером может служить нахождение мощности переменного тока по формуле P=IUcos(φ)=Re . Практически важным случаем нелинейной операции является введение комплексных изображений для сопротивлений. Учитывая закон Ома , найдем символические изображения для простых случаев чисто активного, чисто емкостного и чисто индуктивного сопротивлений.

= R .

= 1/C = (1/jωC) · imejωt = (1/jωС)

= L di/dt = L d(imejωt)/dt = jωLimejωt = jωL .

Из этих соотношений непосредственно следуют выражения для

1/jωС = (1/j) XC

jωL = jXL .

Следует особо подчеркнуть, определение комплексных изображений для сопротивлений включает в себя нелинейную операцию . Поэтому соотношение между сопротивлением и его комплексным изображением имеет другой характер, чем в случае тока и напряжений. Сопротивление равно не вещественной или мнимой части, а модулю своего символического изображения.

 

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.