Здавалка
Главная | Обратная связь

Контрольное задание



1. Опишите общие принципы физиологии стресса.

 

Обычно выделяют три фазы реакции растения на воздействие неблагоприятных факторов: первичная стрессовая реакции (по Селье: тревоги), адаптации (по Селье: резистентности) и истощения. В первую фазу наблюдаются значительные отклонения в физиолого-биохимических процессах, проявляются как симптомы повреждения, так и защитная реакция. Значение защитных реакций состоит в том, что они направлены на устранение (нейтрализацию) возникающих повреждений. Если воздействие слишком велико, организм погибает еще в стадии тревоги в течение первых часов. Если этого не случилось, реакция переходит во вторую фазу.

 

Во второй фазе организм либо адаптируется к новым условиям существования, либо повреждения усиливаются. При медленном развитии неблагоприятных условий организм легче приспосабливается к ним. После окончания фазы адаптации растения нормально вегетируют в неблагоприятных условиях уже в адаптированном состоянии при общем пониженном уровне процессов. В фазу повреждения (истощения, гибели) усиливаются гидролитические процессы, подавляются энергообразующие и синтетические реакции, нарушается гомеостаз. При сильной напряженности стресса, превышающей пороговое для организма значение, растение гибнет. При прекращении действия стресс-фактора и нормализации условий среды включаются процессы репарации, т. е. восстановления или ликвидации повреждений. Адаптационный процесс (адаптация в широком смысле) протекает постоянно и осуществляет «настройку» организма изменениям внешней среды в пределах естественных колебаний факторов. При значительных или внезапных отклонениях условий среды возникает необходимость срочной мобилизации приспособительных реакций. Можно полагать, что стресс-реакция играет существенную роль в адаптации организма. В целом реакция растения на изменившиеся условия является комплексной, включающей изменения биохимических и физиологических процессов. Эти изменения могут носить как неспецифический, так и специфический характер. Неспецифическими являются однотипные реакции организма на действие разнородных стрессоров или разных организмов на один и тот же стресс-фактор. К специфическим относят ответные реакции, качественно отличающиеся в зависимости от фактора и генотипа. Понятие специфичности и неспецифичности адаптивных реакций применяют, во-первых, определяя отношение организма (вида, сорта) к различным стрессорам, а во-вторых, характеризуя реакцию различных организмов (видов, сортов) на один и тот же стрессор.

 

Таким образом, характер ответа растения на различные факторы включает в себя неспецифические реакции, возникающие при действии любых неблагоприятных условий и специфические реакции, зависящие от особенностей воздействия. Важнейшей неспецифической реакцией клеток на действие стрессоров является синтез особых белков. Ряд подобных белков, связанных со стрессом, был идентифицирован в 80—90-е годы. Установлены гены, кодирующие белки и показано, что стресс индуцирует экспрессию целого ряда генов. Это позволяет судить, какие гены ответственны за устойчивость. Стрессовые белки синтезируются в растениях в ответ на различные воздействия: анаэробиоз, повышенные и пониженные температуры, обезвоживание, высокие концентрации соли, действие тяжелых металлов, вредителей, а также при раневых эффектах и ультрафиолетовой радиации. В настоящее время обнаружено, что при каждом из этих стрессов синтезируются как общие, так и специальные для каждого из них белки. Стрессовые белки разнообразны и образуют группы высокомолекулярных и низкомолекулярных белков. Белки с одинаковой молекулярной массой представлены разными полипептидами. Это обусловлено тем, что каждую группу белков кодирует не один ген, а семейство близких генов. После завершения синтеза белка могут происходить различные модификации, например, обратимое фосфорилирование. Защитная роль стрессовых белков в растении подтверждается фактами гибели клетки при введении ингибиторов синтеза белка в период действия стрессора. С другой стороны изменения в структуре гена, повреждающие синтез белков, приводят к потере устойчивости клеток. В результате изменения действия фактора или факторов происходит переключение жизни клетки на стрессовую программу. Это осуществляется одновременно на многих уровнях регуляции. Тормозится экспрессия генов, активность которых характерна для жизни клетки в нормальных условиях, и активируются гены стрессового ответа. Активирование генов стресса происходит благодаря рецепции сигнала и соответствующей сигнальной цепи. Абиотические стресс-факторы (избыток солей, повышенная температура и др.) по-видимому, активируют рецепторы в плазматической мембране. Там начинается сигнальная цепь, которая через различные интермедиаты, такие как протеинкиназы, фосфатазы приводит к образованию транскрипционного фактора. Эти факторы в ядре активируют гены путем связывания со специфическими промоторами. Последовательность реакций следующая: стресс- сигнал -> рецептор в плазмалемме -> сигнальная цепь в цитозоле —> транскрипционный фактор в ядре —> промотор стресс-индуцированного гена -> мРНК -> белок -> защитная роль в растении. В настоящее время исследованы промоторы различных стресс-индуцируемых генов, и при этом найден целый ряд регуляторных последовательностей для различных стрессоров. Например, обнаружен сегмент из 6 нуклеотидов, который активируется АБК, а также сегмент из 9 нуклеотидов, который активируется осмотическим стрессом. Предполагают, что есть последовательности, которые активируют несколько элементов. В результате изменений на транскрипционном уровне в клетках растений через 5 мин от начала стресса появляются мРНК, кодирующие стрессовые белки. Происходят изменения и в белоксинтезирующем аппарате. Распадаются полисомы, синтезирующие нормальные белки и формируются полисомы, синтезирующие стрессовые белки. Наблюдается ослабление, а затем и прекращение синтеза обычных белков в клетке, и переключение аппарата белкового синтеза на синтез стрессовых белков. Показано, что уже через 15 мин после начала воздействия стресс-фактора (теплового) в клетках обнаруживаются стрессовые белки. Их синтез постепенно нарастает, достигая максимума, а затем ослабевает. После окончания воздействия синтез стрессовых белков прекращается и возобновляется синтез белков, характерных для клетки в нормальных условиях. При этом при нормальной температуре мРНК стрессовых белков быстро разрушаются, тогда как сами белки могут сохраняться существенно дольше, обеспечивая, по-видимому, повышение устойчивости клеток к нагреву.

 

Важнейшей неспецифической реакцией на неблагоприятные воздействия является изменение свойств мембран, что связано с перестройками в их структуре. Это в значительной мере касается липидов. Наблюдаются сдвиги в соотношении различных групп жирных кислот, изменяется степень их ненасыщенности, возрастает уровень перекисного окисления липидов (ПОЛ), снижается их подвижность. Это влияет на функции мембранных белков. Структурные изменения в мембранах приводят к освобождению из связанного состояния ионов Са2+. Известна роль кальция в поддержании структуры хроматина, в регуляции активности ферментов в митохондриях и хлоропластах. В цитозоле концентрация кальция невысока (10-5—10-8 М), в то время как в апопласте и органеллах его в 103—104 раз выше. В результате стрессового воздействия поток кальция из апопласта в цитоплазму резко возрастает. Вслед за этим кальций выводится из цитоплазмы. Изменение концентрации кальция запускает специфические мембранные каналы и транспортные системы, а также вызывает структурные изменения в клетке. Нарушение структуры мембран приводит к многочисленным изменениям в метаболизме. Повышается проницаемость мембран, происходит деполяризация мембранного потенциала плазмалеммы, значение рН сдвигается в кислую сторону. Возрастает активность Н+ — помпы в плазмалемме и тонопласте. Увеличивается вязкость цитоплазмы, наблюдается торможение деления и роста клеток. Важной особенностью реакции растений на стресс-факторы является изменение напряженности энергетического обмена. Митохондрии являются основными органеллами, снабжающими клетки таким энергетическим эквивалентом как АТФ. В состоянии стресса цитохромный путь дыхания падает и возрастает альтернативный путь с его терминальной оксидазой АО, не сопровождаемой образованием АТФ. Возникает недостаток энергетических ресурсов. Между тем при стрессе необходимы дополнительные энергетические эквиваленты. Возрастают затраты АТФ на поддержание структуры и обменавеществ, что сопровождается временной активацией дыхания. В дальнейшем при усилении действия стрессора дыхание снижается, и соотношение синтеза и расхода АТФ еще больше нарушается. Возрастание активности гидролитических процессов ведет и к накоплению различных протекторных соединений, например такого низкомолекулярного осмотически активного вещества, как пролин. Пролин способен образовывать гидрофильные коллоиды, что удерживает воду и защищает белки от денатурации (при засухе, засолении, низкой или высокой температурах). Из других стрессовых метаболитов необходимо отметить образование редуцирующих Сахаров, полиаминов, бетаинов. Полиамины способны предотвращать повреждения, вызванные морозом, засухой, действием солей. Это вещества основной природы, легко связываются с отрицательно заряженными группами полимеров. Увеличивают стабильность РНК, ДНК, рибосом, стабилизируют мембраны, тормозят лизис клеточных стенок. Бетаины как метилированные производные аминокислот и аминов являются главными донорами метильных групп. Метилирование изменяет функциональную активность ДНК и других внутриклеточных полимеров и повышает их устойчивость к различным стрессовым воздействиям. Следует отметить, что перенос метильных групп на ДНК является самой распространенной модификацией ДНК. Существенную роль в ответе растений на стрессоры играет гормональная система. Показано, что при неблагоприятных условиях возрастает количество абсцизовой кислоты, этилена, жасмоновой кислоты, изменяется соотношение фитогормонов. Высказывается мнение, что у растений в отличие от животных при неблагоприятных условиях ведущую роль играют гормоны, тормозящие их функциональную активность. Это обеспечивает организму торможение роста и вхождение в покоящееся состояние. При действии неблагоприятных факторов важным для растения, является соранение нормальных донорно-акцепторных отношений, поскольку при снижении запроса на ассимиляты, уменьшается фотосинтез. Однако на уровне организма имеется возможность смягчать это явление. В ряде случаев это происходит в результате увеличения объемов запасающих тканей.

 

Устойчивость растений против неблагоприятных условий имеет разный характер. Она может быть основана на том, что организм тем или иным путем избегает их воздействия. Например, одни растения запасают воду (суккуленты) и тем самым избегают обезвоживания при засухе, другие растения, с очень коротким вегетационным периодом (эфемеры), приурочивают жизнедеятельность ко времени выпадения осадков. Значительно большее значение имеет устойчивость, основанная на выносливости клеток растений, т. е. способности в процессе адаптации перестраивать как скорость, так и направление метаболических реакций таким образом, чтобы и в изменившихся условиях среды вырабатывать все необходимые соединения. Разный уровень устойчивости обусловлен биологическими особенностями видов. Растения, различающиеся по устойчивости, на стрессовые воздействия реагируют однотипно, но отличаются по скорости физиологических и структурных перестроек. Для растений, устойчивых к действию стрессоров, показана большая стабильность клеточных мембран по сравнению с неустойчивыми. Сохранению целостности мембран способствует торможение распада липидов и белков, что может быть связано с эффективной работой механизмов антиоксидантной защиты. Важными является сохранение содержания ненасыщенных жирных кислот, регуляция кальциевого обмена в клетках. Это придает мембране большую пластичность и создает лучшие условия для функционирования мембран. Так, показано, что мембраны холодостойких растений отличаются большим содержанием ненасыщенных жирных кислот. Это позволяет сохранять жидкостное состояние при пониженных температурах, при которых они переходят в полужидкое состояние. Значение липидов мембран в устойчивости к низким температурам подтверждается опытами с трансгенными растениями. При изучении процессов устойчивости отмечаются случаи одновременного ее повышения к нескольким факторам после действия какого-либо одного стрессора (по П.А. Генкелю: «сопряженнаяустойчивость»). Так, установлено, что предварительный тепловой шок повышает устойчивость к водному дефициту, засолению, тяжелым металлам. С другой стороны, повышение теплоустойчивости растений отмечено при водном дефиците, действии засоления, холодовой закалке

В настоящей главе остановимся на рассмотрении физиологических основ засухоустойчивости, жаростойкости, холодоустойчивости, морозоустойчивости, зимостойкости, солеустойчивости, устойчивости к недостатку или отсутствию кислорода.

 

2. Какие приспособления вырабатываются у растительного организма в условиях водного дефицита, низких температур, засоления, действия токсичных газов, радиации и патогенных микроорганизмов. Ответ представить в виде таблицы.

Вид дефицита приспособления
Водный дефицит 1. Избегание засухи: быстрое фенологическое развитие; пластичность развития.   2. Засуховыносливость при высоком водном потенциале тканей: поддержание поглощения воды; увеличение корнеобразования; увеличение гидравлической проводимости.   3. Уменьшение потери воды: уменьшение эпидермальной проводимости; уменьшение абсорбции радиации; уменьшение поверхности испарения.   4. Засух выносливость при низком водном потенциале тканей: поддержание тургора (аккумуляция осмотика, увеличение эластичности); толерантность к высушиванию (протоплазменная устойчивость)
Низкая температура Из внешних приспособлений растений к холоду в период роста и развития следует отметить карликовость, зависящую как от условий среды (когда растение тем меньше, чем суровее условия его произрастания), так и от генетических свойств (когда улучшение условий жизни не приводит к увеличению размеров растения); опушение различной степени и характера, препятствующее тепловому излучению и, следовательно, повышающее температуру опушённых органов, особенно в солнечные дни. Известно, например, что температура серёжек у ивы арктической в солнечный день на 6 С выше температуры окружающего воздуха. В качестве оригинального приспособления для повышения температуры жизненно важных органов может рассматриваться параболическая форма раскрытого цветка у некоторых видов растений. Имеются данные, говорящие о том, что в фокусе этого "параболического зеркала", где обычно располагаются рыльца и пыльники тычинок, температура на 10 С выше окружающего воздуха, что привлекает насекомых и таким образом благоприятствует процессам опыления.
Засоление Приспособление растений к условиям засоления осуществляется многими путями. Наиболее важные среди них - осморегуляция и специализация, или модификация транспортных процессов. Поэтому для получения солеустойчивых форм растений необходимо тщательно изучать транспорт ионов в зависимости от ионного состава среды и генотипа растений.   Избыток солей в почве токсичен для большинства растений. Наиболее вредны легко растворимые соли, которые легко проникают в цитоплазму (NaCl, CaCl2, Na2SO4 и т.д.). Менее токсичны трудно растворимые соли. Это CaSO4, СaCO3 и т.д.   На засоленных почвах поселяются растения, приспособленные к высокому содержанию солей - галофиты. Растения незасоленных почв называют гликофитами. Флора галофитов богата и разнообразна в аридных районах. В зависимости от морфо-физиологических особенностей и путей адаптации к засолению различают несколько групп галофитов: Эугалофиты или растения-соленакопители. Способны накапливать до 10-50% солей от массы золы. Имеют характерный внешний облик с преобладанием суккулентных черт. У стеблевых суккулентов стебли мясистые, членистые, с редуцированными листьями, по периферии стебля располагается ассимиляционная ткань двухслойная палисадная паренхима, а в центре находится водозапасающая ткань (у солероса травянистого Salicornia herbacea, сарсазана шишковатого Halocnemum strobilaceum и т.д.); у листовых суккулентов, например у солянок (Salsola), сильно утолщается листовая пластинка за счет разрастания палисадной ткани. При этом размеры листовой пластинки уменьшаются. Соли у таких растений накапливаются не только в цитоплазме, но и в клетках, служащих вместилищами балластных веществ. Состав ионов в теле растения соответствует, как правило, их соотношению в почве. Хотя, иногда, растения избирательно накапливают те или иные ионы. Например, маревые избирательно накапливают натрий, хлор, оксалаты. Крестоцветные накапливают ионы натрия и сульфатные ионы. Некоторые растения даже служили источниками для получения солей, например Salsola kali, S. soda, род Кalidium поташник. Опад эугалофитов способствует засолению поверхностного слоя почвы. Криногалофиты или растения-солевыделители. Эти растения выделяют наружу избыток соли в виде солевого раствора через особые железки на листьях (тамарикс Tamarix, франкения Frankenia, кермек Armeria и др.) и часто имеют на поверхности листьев налет из кристаллов солей. По строению листа многие криногалофиты близки к мезофитам. Гликогалофиты. К этой группе относятся многие растения ксерофильного облика (например полыни Artemisia). Корни у них мало проницаемы для солей, т.к. высокое содержание углеводов создает высокое осмотическое давление, поэтому в тканях растений соли не накапливаются. Псевдогалофиты. Эту группу составляют растения, избегающие засоления благодаря глубокой корневой системе. Их сосущие корни располагаются в глубоких, мало засоленных горизонтах. К таким растения можно отнести, например тростник Phragmites.   Галофиты имеют ряд биохимических особенностей для оптимального функционирования в условиях засоления: стимуляция дыхания, способствующая выработке дополнительной энергии, использующейся на структурные перестройки уменьшение проницаемости мембран и цитоплазмы для солей, увеличение оводненности цитоплазмы за счет коллоидно-связанной воды избирательное связывание ионов белками и органическими кислотами накопление веществ, выполняющих защитную функцию (стрессовых метаболитов), например, аминокислоты пролина, углеводов, пигментов высокое осмотическое давление обеспечивает возможность всасывания воды из концентрированного почвенного раствора.   Своеобразную группу галофитов составляют:   Галомезофиты - это растения маршей приморских лугов, литоралей, приморских скал и дюн. В этих местообитаниях избыток солей поступает в почву: с морскими приливами из засоленных грунтовых вод с ветром   Для одних видов этот избыток солей сочетается с недостатком увлажнения, для других с избытком. Видовой состав приморской флоры весьма однообразен. Это морской подорожник (Plantago maritima), астра солончаковая (Aster tripolium). Все эти виды характеризуются повышенной концентрацией клеточного сока, высоким осмотическим давлением (до 53 атм.), накапливают много солей в своем теле (до 22% от массы золы). Растения мангровых зарослей. Мангры это затопляемые во время прилива леса тропических побережий. Сильное засоление в этих местообитаниях создается благодаря действию морской воды. Наиболее распространненными древесными растениями мангров являются виды из рода авиценния (Avicennia) и ризофора (Rhizophora). Адаптации к засолению у них проявляются в следующем: ионы поглощаются избирательно (больше калия и меньше натрия) избыток солей удаляется путем их выделения через особые устьица, поэтому нижний эпидермис листьев часто покрыт солевой корочкой осуществляется ультрафильтрация воды корневыми системами, при этом жидкость, поступающая в сосуды древесины, содержит всего лишь 0,03% солей от 30% первоначальной концентрации солей в морской воде характерно живорождение или вивипария прорастание семени в плоде, находящемся на материнском растении. Питание развивающего зародыша происходит через особый плацентарный орган, образованный в результате срастания семядолей с внутренним интегументом. Вода, проходя через него, сильно опресняется, благодаря чему проростки обеспечиваются пресной водой.
действия токсичных газов Для газоустойчивости существенна способность растений 1) регулировать поступление токсических газов, 2) поддерживать буферность цитоплазмы и её ионный баланс, 3) осуществлять детоксикацию образующихся ядов.
радиации Видоизменение строения
патогенные микроорганизмы Иммунитетом называется невосприимчивость (устойчивость) организма к инфекционной болезни при контакте с ее возбудителем и наличии условий, способствующих заражению. Например, хвойные породы никогда не поражаются мучнистой росой, а лиственные — болезнями типа шютте. Ель абсолютно невосприимчива к ржавчине побегов, а сосна — к ржавчине шишек. Такой абсолютный иммунитет обусловлен биологическим несоответствием этих растений свойствам и требованиям возбудителей данных болезней. Чаще всего он объясняется неспособностью патогена проникнуть в растение и развиваться в нем даже при самых благоприятных внешних условиях.   Наряду с абсолютной невосприимчивостью к одним болезням у растений может наблюдаться относительная устойчивость (или, соответственно, относительная восприимчивость); к другим заболеваниям. Она зависит от индивидуальных свойств растения, его анатомо-морфологических или физиолого-биохимических особенностей, уменьшающих возможность заражения или ограничивающих распространение патогена в тканях растения-хозяина. Степень устойчивости растений к болезням может быть различной: от весьма высокой (близкой к полной невосприимчивости) до очень низкой.   У растений различают неспецифический и специфический иммунитет. Неспецифическим (или видовым) иммунитетом называется устойчивость определенного вида растений к тем возбудителям, которые вообще неспособны поражать этот вид. Неспецифический иммунитет обеспечивает недоступность растения для основной массы сапротрофной и патогенной микрофлоры, населяющей среду обитания этих растений. Специфическим, (или сортовым) иммунитетом называется устойчивость отдельных сортов или форм какого-либо вида растений к возбудителям, способным поражать этот вид.   Различают также иммунитет врожденный (естественный) и приобретенный (искусственный). Врожденным иммунитетом называется наследственная невосприимчивость к болезни, сформировавшаяся в результате длительной совместной эволюции (филогенеза) растения-хозяина и патогена или направленной селекции. Приобретенным иммунитетом называют устойчивость к болезни, приобретаемую растением в процессе его индивидуального развития (онтогенеза) под влиянием определенных внешних факторов или в результате перенесения данной болезни. Приобретенный иммунитет не передается по наследству.   Устойчивость растений (обычно какого-либо сорта) лишь к определенным физиологическим расам патогена называют вертикальной, а ту или иную степень устойчивости ко всем расам данного патогена — горизонтальной. Устойчивость какого-либо вида или сорта растений одновременно к нескольким болезням называют групповой, или комплексной, устойчивостью.   Врожденный иммунитет растений бывает пассивным и активным. Пассивный иммунитет, или аксения, — это устойчивость к болезни, которая обеспечивается свойствами, проявляющимися у растений независимо от угрозы заражения. Таким образом, свойства, обусловливающие пассивный иммунитет, не являются защитными реакциями растения на нападение патогена.   Активный иммунитет — это устойчивость к болезни, которая обеспечивается свойствами растений, проявляющимися у них только в случае нападения патогена, т. е. в виде защитных реакций растения-хозяина на внедрение возбудителя.

 

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.