Здавалка
Главная | Обратная связь

Устройство и принцип действия полупроводникового инжекционного моно лазера



 

В полупроводниковых лазерах активным элементом являются кристаллы полупроводника, образующие резонатор и возбуждаемые либо инжекцией тока через p-n – переход, либо пучком электронов. Соответственно различают инжекционные лазеры и лазеры с электронным возбуждением.

В полупроводниковых моно лазерах индуцированные переходы происходят между занятыми электронными состояниями в зоне проводимости и вакантными состояниями в валентной зоне в области p-n – перехода. Одно из главных отличий полупроводникового лазера от атомных молекулярных состоит в том, что эти переходы происходят не между двумя узкими энергетическими уровнями, а между состояниями, распределенными по энергии.

Первые инжекционные лазеры были созданы из арсенида - галлия в форме параллелепипеда с планарным диффузионным р-n – переходом, расположенным перпендикулярно двум противоположным торцам полупроводникового кристалла, как показано на рисунке 5.12.

Рисунок 5.12 – Структура инжекционного моно лазера

 

Поскольку показатель преломления полупроводникового кристалла больше, чем у воздуха, его сколотые торцевые поверх­ности действуют как зеркала, так что генерация излучения к его усиление происходит внутри резонатора Фабри-Перо. При определенном пороговом уровне усиление превышает потери в объёме и на зеркалах для некоторой моды и лазер начинает генерировать.

При включении инжекционного лазера в прямом направлении и малом токе накачки, как и в СИД возникает спонтанное излучение. Из множества спонтанных фотонов лишь некоторые из них отразятся от зеркала и пройдут в плоскости активного слоя. При увеличении тока накачки растет число электронов на верхнем энергетическом уровне в зоне проводимости (говорят, что имеет место «инверсная населенность уровня»). При этом спонтанный фотон вызывает переход электрона из зоны проводимости в валентную зону, где происходит рекомбинация и появляется стимулированный фотон (СТФ).

Энергия СТФ, направление его движения, фаза, в точности совпадают с соответствующими параметрами спонтанного фотона (СПФ). Таким образом, вместо одного фотона появились два. Если ток накачки достиг некоторого значения, называемого «пороговым», этот процесс нарастает лавинообразно: два фотона порождают четыре, четыре -16, и т.д. В резуль­тате мощность излучения резко возрастает (ватт - амперная характеристика инжекционного лазера приведена на рисунке 5.13).

 

Рисунок 5.13 – Ватт – амперная характеристика инжекционного лазера

 

Часть мощности излучения выводится наружу через оба зеркала (один из выходов инжекционного лазера может быть использован для контроля, с помощью фотодиода, из­лучаемой мощности). Заметим, что величина порогового тока зависит от температуры окружающей среды. При увеличении температуры мощность излучения на заданной длине волны резко падает (в соответствии с рисунком 5. 13).

Рассмотрим теперь особенности спектральной характеристики инжекционного лазера. При малых токах накачки имеет место спонтанное излучение, поэтому спек­тральная характеристика инжекционного лазера повторяет здесь аналогичную характеристику число мод в нем резко уменьшается, и характеристика имеет вид как на рисунке 5.14. Ширина спектральной линии этой характеристики много меньше, чем ширина спектральной линии СИД. По этой причине при ор­ганизации связи по одномодовым волокнам в качестве источника излучения применяют только инжекционные лазеры, так как при этом резко уменьшается хроматическая дисперсия в ОВ и возрастает дальность связи.

Рисунок 5.14 – Спектральная характеристика инжекционного лазера

 

Полупроводниковые лазеры работают в широком спектральном диапазоне – от 0,33 мкм до 31 мкм. Лучшие параметры достигаются при охлаждении. Инжекционные лазеры работают в импульсном и непре­рывном режимах, а лазеры с электронным возбуждением в импульс­ном.

Мощность излучения полупроводникового лазера зависит от величины тока, протекающего через p-n переход. Пороговая плот­ность тока накачки для серийно выпускаемых лазеров на составляет (2 ´ 103 ¸ 104) А/см2. При этом КПД составляет около 1%. Коэффициент полезного действия полупроводниковых охлаждаемых лазеров в импульсном режиме доходит до (50 ¸ 80)%, однако необходимость охлаждать кристалл до 77 и даже 4 К заметно услож­няет конструкцию лазера и сокращает срок его службы (до единиц иногда десятков часов).

В полупроводниковых лазерах с электронным возбуждением за счет использования большей, чем в инжекционных лазерах, части активного вещества можно достичь больших импульсных мощностей с небольших объемов. Такие лазеры работают в основном с охлаждением, хотя есть излучатели работающие, и при комнатной температуре. Конструктивно они представляют собой электровакуумный прибор, внутри которого устанавливается активный элемент – ми­шень на хладопроводе, а управление электронным пучком, бомбар­дирующим мишень, производится с помощью электромагнитной и электростатической системы. Такие лазеры на на l = 0,49 мкм дают импульсы мощностью 200 кВт, длительностью 3 нс при ком­натной температуре и имеют КПД около 1 %.

В переносных оптических системах находят применение мало­габаритные полупроводниковые лазеры. Некоторые инжекционные ла­зеры имеют длину около 1 мм при толщине перехода (3¸5) мкм, вы­ходная мощность в импульсном режиме достигает (10¸20) Вт, а КПД - 50 %. Они позволяют осуществлять модуляцию излучения в широком диапазоне изменением тока накачки. К недостаткам таких лазеров следует отнести большой угол расходимости пучка, импульсный ре­жим работы и широкую спектральную полосу генерируемого излучения.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.