Здавалка
Главная | Обратная связь

Методы извлечения металлов (подземное, кучное, чановое). Использование микроорганизмов в процессах добычи полезных ископаемых.



Поверхностное выщелачивание куч и отвалов, в основном, сводится к извлечению металлов из отходов горнодобывающей промышленности или побочных бедных руд, переработка которых обычными способами не экономична. Методы поверхностного выщелачивания куч и отвалов, применяемые в настоящее время, мало чем отличаются от процесса, который использовали в XVIII веке в Испании на месторождении Рио-Тинто для извлечения меди из руд выветрившейся породы. Этот метод применяют обычно при извлечении меди из пород с низким ее содержанием (менее 0,4% по весу). Такие отвалы накапливаются в больших количествах при крупномасштабной открытой разработке руды, могут занимать огромные площади и достигать в высоту нескольких сот метров. Самый большой отвал Бингхэм-Каньон находится в Америке и вмещает около 3,6 х 108 т породы.

Выщелачивание куч несколько отличается от выщелачивания отвалов. Кучи содержат повышенное по сравнению с отвалами содержание металла, извлечение которого в принципе возможно за достаточно короткий срок – несколько месяцев. В то же время выщелачивание отвалов может длиться годами.

В кучах и отвалах измельченная руда уложена на наклонное водонепроницаемое основание. Поверхности куч и отвалов орошаются выщелачивающей жидкостью, представляющей собой слабый раствор кислоты и ионов трехвалентного железа. Сбор раствора с извлеченным металлом, профильтровавшегося через слой породы, собирают снизу. Поскольку при выщелачивании отвалов в среде, как правило, развиваются природные микроорганизмы, засева не производят.

Кислая среда и кислород способствуют повышению каталитической активности Thiobacillus ferrooxidans. Выщелачивающая жидкость с помощью насосов подается наверх кучи руды, распыляется по ее поверхности и затем, самотеком стекая вниз, фильтруется через нее. Обогащенные металлом растворы, стекающие из отвалов и куч, направляются в специальные пруды и водоемы для сбора и извлечения металла. Извлечение проводят методом простого осаждения или электролизом, а также более сложными методами.

Отработанные выщелачивающие растворы, содержащие в основном растворенное железо, регенерируются в окислительных прудах и вновь подаются в отвалы. Типичная схема бактериального выщелачивания меди из куч и отвалов представлена.

Скорость извлечения металла при промышленном выщелачивании куч и отвалов зависит от многих факторов – активности культуры, качества руды и степени ее дисперсности, скорости фильтрации выщелачивающего раствора, аэрации. В целом в США 15 % меди получают в процессах бактериального выщелачивания куч и отвалов.

Существенно реже микроорганизмы применяют для выщелачивания в промышленных масштабах урана. Для этого порода или руда должны быть богаты сульфидными минералами и не слишком интенсивно поглощать кислород.

Наиболее сложен процесс бактериального выщелачивания в аппаратах – так называемое чановое выщелачивание. Этот тип выщелачивания применяют в горнорудной промышленности для извлечения урана, золота, серебра, меди и других металлов из окисных руд или упорных сульфидных концентратов.

Обычное производство большинства металлов на начальной стадии предусматривает концентрирование металлосодержащего минерала из руды. В концентратах содержание металлов может на порядок превосходить их концентрации в исходных рудах и породах. Бактериальное выщелачивание сульфидных концентратов имеет несомненные достоинства, так как может быть реализовано непосредственно в месте получения концентрата в районе разрабатываемого месторождения без больших и дорогостоящих затрат на транспортировку. Однако лимитирующим моментом бактериального выщелачивания являются довольно низкие скорости протекания этих процессов, а также неполная растворимость некоторых металлов.

Схема чанового выщелачивания сульфидных концентратов замкнутая. Оборотные воды после регенерации используются в качестве питательной среды для бактерий и выщелачивающего раствора.

Определенную проблему при чановом выщелачивании представляет обеспечение процесса инокулятом.

Для получения активной микробной культуры существуют несколько способов. Наиболее эффективен способ культивирования железоокисляющих бактерий в проточном электрохимическом культиваторе сопряженно с электровосстановлением субстрата. В процессе роста микроорганизмы окисляют двухвалентное железо до трехвалентного, а в ходе электрохимических превращений железо восстанавливается до двухвалентного и снова служит субстратом для микроорганизмов:

Биосорбция металлов из растворов.Ужесточение законов по охране окружающей среды и требования к качеству воды делают необходимым совершенствование существующих и разработку новых, более эффективных методов очистки вод от металлов. Биологические методы в последние годы находят все большее применение для извлечения металлов из промышленных, а также бытовых сточных вод. Эти методы, в отличие от дорогостоящих физико-химических, характеризуются достаточной простотой и эффективностью. Обычно для этих целей загрязненные металлами воды собирают в отстойниках или прудах со слабым течением, где происходит развитие микроорганизмов и водорослей. Эти организмы накапливают растворенные металлы внутриклеточно или, выделяя специфические продукты обмена, переводят их в нерастворимую форму и вызывают осаждение. Многие микроорганизмы способны накапливать металлы в больших количествах. В ходе эволюции в них сформировались системы поглощения отдельных металлов и их концентрирования в клетках. Микроорганизмы, помимо включения в цитоплазму, способны также сорбировать металлы на поверхности клеточных стенок, связывать метаболитами в нерастворимые формы, а также переводить в летучую форму.

Селекция в этом направлении и применение новых генноинженерных методов позволяют получать формы, активно аккумулирующие металлы, и на их основе создавать системы биоочистки. Идея использования микроорганизмов для извлечения металлов из растворов, помимо огромного экологического значения, важна также в качестве способа получения экономически важных металлов.

Основными процессами извлечения металлов из растворов с участием микроорганизмов являются: биосорбция, осаждение металлов в виде сульфидов, восстановление шестивалентного хрома.

С помощью биосорбции даже из разбавленных растворов возможно 100 %-е извлечение свинца, ртути, меди, никеля, хрома, урана и 90 %-е золота, серебра, платины, селена.

Внутриклеточное содержание металлов, как установлено, может быть очень значительным – для урана и тория до 14–18 % от АСБ денитрифицирующих микроорганизмов, для серебра – до 30 % АСБ. Недавно установлена способность водорослей, дрожжей и бактерий (Pseudomonas) эффективно сорбировать уран из морской воды.

Способы проведения биосорбции различны: возможно пропускание раствора металлов через микробный биофильтр, представляющий собой живые клетки, сорбированные на угле. Промышленно выпускаются также специальные биосорбенты, например «биосорбент М» чешского производства, изготовленный в виде зерен из микробных клеток и носителя размером 0,3–0,8 мм. Сорбент используют в установках, работающих на ионообменных смолах; его емкость составляет 5 мг урана на 1 г АСБ клеток (максимальная емкость – до 120 мг). Возможно также производство сорбентов на основе микробных полисахаридов. Такие сорбенты можно широко применять в различных, включая природные, условиях, они просты в употреблении. После концентрирования металлов микроорганизмами на следующей стадии металлы следует извлечь из микробной биомассы. Для этого существуют различные способы – как недеструктивные, так и основанные на экстракции путем разрушения (например, пирометаллургическая обработка биомассы или применение кислот и щелочей).

Извлечение металлов из растворов на основе осаждения сульфидов известно давно. Сульфатредуцирующие микроорганизмы выделяют сероводород, который практически полностью связывает растворенные металлы, вызывая их осаждение. На основе данного метода возможно, например, извлечение меди и растворов, содержащих до 8,5 г/л меди в форме цианида; полнота извлечения достигает 98,5 %.

Представляет практический интерес также метод восстановления шестивалентного хрома в растворах. Известны бактерии, способные в анаэробных условиях восстанавливать шестивалентный хром, содержащийся в бытовых сточных водах, до трехвалентного, который далее осаждается в виде Cr(OH)3.

Обогащение руд.К перспективным направлениям биогеотехнологии металлов относяи направление, ориентированное на обогащение руд и концентратов. Весьма эффективным представляется применение для этих целей сульфатредуцирующих бактерий.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.