Здавалка
Главная | Обратная связь

Физические основы эксперимента



При течении воздуха в капилляре разные его слои движутся с разными скоростями. На рисунке 2 в плоскости максимального горизонтального сечения капилляра схематично показаны скорости отдельных слоев воздуха : минимальные скорости имеют слои, прилегающие к стенкам капилляра (из-за трения о стенку), наибольшие скорости имеют центральные слои воздушного потока.

Рис. 2.

В результате хаотического теплового движения молекулы воздуха будут переходить из слоя в слой. При перемещении молекул из быстрого слоя в более медленный (например, из слоя Б в слой А на рис.2) будет переноситься больший импульс, чем в обратном направлении.В результате произойдет изменениеимпульсов слоев в направлении Х на величину , пропорциональную градиенту скорости (т.е. изменению скорости на единицу длины в направлении Z): импульс быстрого слоя уменьшится, а медленного – увеличится на одну и ту же величину . Подробное теоретическое рассмотрение этих процессов [1, §130] показывает, что

, (1)

где - коэффициент вязкости (или внутреннего трении), - площадь соприкосновения слоев, - время; знак «минус» показывает, что перенос импульса происходит в сторону слоев с меньшими скоростями .

Уравнение (1) позволяет найти силы, действующие на движущиеся слои газа. Т. к. по второму закону Ньютона , то из (1) следует , что

. (2)

Это сила, которая тормозит быстро движущийся слой газа (на рис.2 – слой Б), и ускоряет медленно движущийся слой (на рис.2 –слой А). Это так называемая сила внутреннего трения, действие которой приводит к выравниванию скоростей отдельных слоев воздуха.

Явление выравнивания скоростей движение отдельных слоев газа или жидкости, обусловленное хаотическим тепловым движением молекул и, тем самым, переносом импульса, называется внутренним трением или вязкостью.

 

При ламинарном (без завихрений) течении воздуха по капилляру лабораторной установки устанавливается равенство между силой внутреннего трения и силой, обусловленной разностью давлений на концах капилляра. В этих условиях объем газа , прошедший через капилляр за время , определяется законом Пуазейля [1, §77] :

, (3)

где - внутренний радиус капилляра, - его длина.

Из (3) следует, что

. (4)

Т.к. , где - плотность жидкости в манометре, - разность уровней жидкости в манометре, то после подстановки этого выражения в (4) получим:

, (5)

где - совокупность постоянных для эксперимента величин.

Эта формула используется для экспериментального определения коэффициента вязкости в данной лабораторной работе.

В заключении отметим, что теоретическое описание внутреннего трения [1,2], определяет коэффициент вязкости как

, (6)

где - плотность газа: ,

- средняя длина свободного пробега молекул: ,

- средняя скорость молекул : .

Здесь - концентрация молекул, -масса молекулы, -эффективный диаметр молекулы, - постоянная Больцмана, - температура газа.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.