Здавалка
Главная | Обратная связь

Приклад розв’язання завдання 5.



Дослідити функцію та побудувати її графік.

Розв’язання:

а) Область визначення функції , тобто функція існує при всіх значеннях.

б) Парність, періодичність , .

Функція загального вигляду, ні парна, ні непарна, неперіодична.

в) Точки перетину з осями координат:

- з віссю ОХ: .

Легко перевірити, що є корінь рівняння, тому .

Знайдемо дві інші точки перетину графіка з віссю ОХ:

, .

Точки перетину графіка з віссю ОХ – А(1;0), В(-4,37;0), С(9,37;0), точка перетину графіка з віссю OY (х=0) – D(0;41).

г) Інтервали зростання та спадання функції, точки екстремуму:

; .

Тоді - критичні точки.

 

Здобуті дані заносимо до таблиці.

x (-¥; -2) -2 (-2; 6) (6; +¥)
f¢(x) + - +
f(x) ­ (зростає) ¯ (спадає) -175 ­ (зростає)

 

Точка максимуму функцій М (-2; 81), точка мінімуму N (6; -175).

д) Точка перетину, інтервали опуклості та вгнутості:

y¢¢=6x-12, y¢¢=0, 6x-12=0 Þ x=2 – критична точка другого роду.

 

Дані заносимо до таблиці

x (-¥; 2) (6; +¥)
f¢¢ (x) - +
f(x) Ç (опукла) -47 È (вгнута)

Точка перетину Е(2; -47).

е) Функція не має асимптот. Використовуючи здобуті данні, будуємо графік функції.


 

Рекомендована література

1. Барковський В.В., Барковська Н.В. Математика для економістів. Вища математика, - К.: Національна академія управління, 1997. – 397 с.

2. Высшая математика для экономистов. Учебное пособие для вузов/ Н. Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред. Н.Ш. Кремера. – Банки и биржи, ЮНИТИ , 1997. – 439 с.

3. Глаголев А.А., Солнцева Т.В. Курс высшей математики. - М.: Высш. школа,1985.

4. Данко П.Е., Попов А.Г., Кожевныкова Т.Я. Высшая математика в упражнениях и задачах. В 2-х частях.: Учебное пособие для вузов. – Высш. школа, 1996.

5. Дубовик В.П., Юрик І.І. “Вища математика”. – К.: А.С.К., 2001.

6. Збірник задач з лінійної алгебри та аналітичної геометрії. – За ред. Рудавського Ю.К., Львів, “Бескид Біт”, 2002.

7. Кудрявцев В.А. Демидович В.П. Краткий курс высшей математики.. – М.: Наука, 1989.

8. Михайленко В.М. Федоренко Н.Д. Алгебра та геометрія для економістів: Учбовий посібник. – К.: УФІМБ, видавництво “Пошук”, 1997.

9. Рудавський Ю.К., Костробій П.П., Луник Х.П., Уханська Д.В. Математика для інженерів. Лінійна алгебра та аналітична геометрія. – Львів, “Бескид Біт”, 2002.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.