Здавалка
Главная | Обратная связь

Фазосдвигающее устройство (ФСУ).



Назначение ФСУ в СИФУ ТП - регулирование фазы включающих импульсов тиристоров. Возможны различные принципы их реализации, но неизменным является то, что ФСУ осуществляет сдвиг импульса относительно момента естеств, величина которого регулируется в зависимости от значения управляющего напряжения Uaенной коммутации в сторону запаздывания на угол У. Два принципа фазосмещения, нашедших распространение в реальных ТП. Один из них называется вертикальный, другой- интегральный принципы.
Входные устройства СИФУ ТП.

Назначение входного устройства - сформировать аналоговый сигнал управления (UУ ) на СИФУ ТП, учитывающий задающее воздействие, воздействие сигналов обратных связей, корректирующее воздействие. Для реализации возложенных на входное устройство (ВУ) функций необходимо осуществить:

 

  • Фильтрацию всех поступающих сигналов;
  • Выполнить все необходимые логические действия с поступившими сигналами (суммирование с учетом их знаков, интегрирование тех сигналов, воздействие которых должно определяться их средними значениями);
  • Усиление результирующего сигнала;
  • Ограничение UУ допустимыми минимальными и максимальными значениями.


Каждая из перечисленных функций выполняется, обычно, своим, специальным, предназначенным для этого устройством, схемная и элементная реализация которого может иметь массу вариантов. Рассматривать эти варианты нецелесообразно, но некоторые тенденции в реализации этих устройств можно отметить:

 

  • Так как мощности поступающих сигналов малы, в качестве фильтров обычно используют пассивные однозвенные R-C фильтры - Г- образные и П - образные;
  • Функция суммирования реализуется обычно сумматором, выполненном на операционном усилителе, например, по схеме приведенной на рис 38:
  • Усиление результирующего сигнала выполняется усилителем постоянного тока, выполненным на транзисторах либо на операционных усилителях.


 

  • Ограничение UУ сверху и снизу может быть реализовано с помощью кремниевых стабилитронов.


Выходные устройства СИФУ ТП. (формирователи импульсов).

Обычно в системах управления операции формирования импульсов, их усиления и гальванической развязки с системой управления осуществляются одним узлом, который, в дальнейшем, именуется “выходным устройством” (Вых.У). В других литературных источниках они именуются “формирователями импульсов” (ФИ).

Примером может служить устройство, схема которого представлена на рис 39:

Оно состоит из:

  • выходного транзистора VT;
  • импульсного трансформатора (Тр- И), со вторичной обмотки которого снимаются импульсы, поступающие на управляющий электрод тиристора.


Существенное влияние на параметры включающего импульса в формирователе импульсов (ФИ) оказывает импульсный трансформатор. В схеме для интенсивного нарастания тока в первичной обмотке трансформатора в момент формирования импульса введена дополнительная вторичная обмотка трансформатора, включенная в цепь управления (2).

Для предотвращения утечки тока через выходную цепь (Э-К) транзистора и намагничивания сердечника трансформатора этими токами утечки в промежутках между рабочими импульсами, предусмотрен источник запирающей ЭДС (Eзапир.), который запирая транзистор в промежутках между рабочими импульсами, предотвращает подмагничивание сердечника, но не препятствует четкому включению транзистора VT при создании условий для прохождения iвкл.

Диод VD2 , установленный параллельно первичной обмотке трансформатора, затягивает процесс размагничивания импульсного трансформатора в промежутках между рабочими импульсами и, этим самым, защищает транзистор VT от пробоя импульсом перенапряжения, который возник бы при отсутствии VD2 .


23 Способы реверса вентильных электроприводов.

Реверс – это или изменение направления вращения механизма на противоположенное, или изменение момента вращения с прямого на обратный при неизменном направлении вращения.

Схемы реверсивного вентильного электропривода можно разбить на две основные группы:

 

  1. Схемы с одним комплектом вентилей и переключениями в цепи якоря;


“-”

- медленно работает

- броски тока при переключениях

- сложность регулирования скорости эл.привода

- износ реверсивных контакторов

“+”

- простота

- дешевизна

 

  1. Схемы бесконтактного реверса с двумя комплектами вентелей.

 

Бесконтактные реверсивные схемы с двухкомплектными ТП.

Применяются в тех случаях, когда требуются предельно быстрые реверсы и большая частота последних и нужны плавные и быстрые переходы с высших скоростей на низшие. РТП обеспечивают более плавный переход из двигательного режима в тормозной.

Схемы реверсивных вентильных электроприводов с двумя комплектами вентилей делятся на два основных класса:

 

  1. перекрестные схемы (или восьмерочные);
  2. встречно- параллельные (противопараллельные).


В перекрестных схемах силовой трансформатор (Тр) имеет две изолированные группы вторичных обмоток, каждая из которых питает свою группу вентилей: ТПВ и ТПН.

Встречно-параллельные или противо-параллельные схемы (рис 44, 45) - имеют одну группу вторичных обмоток питающего трансформатора.


Сравнивая перекрестные и встречно- параллельные схемы, можно отметить достоинства и недостатки каждого из этих классов.

Недостатком перекрестных схем является необходимость иметь более дорогой и хуже используемый трансформатор с двумя комплектами вторичных обмоток.

Достоинство- меньшее число уравнительных дросселей в трехфазной мостовой схеме (наиболее распространенной в вентильном электроприводе) и меньшая их индуктивность.

Во встречно- параллельных схемах размер и стоимость трансформатора меньше, т.к. требуется только одна вторичная обмотка. Более того, при применении противопараллельных схем можно вовсе обойтись без трансформатора, если уровень напряжения сети переменного тока соответствует потребной величине выпрямленного напряжения. Правда, в этом случае возможно превышение критического значения нарастания анодного тока в вентилях. Поэтому приходится устанавливать в двух фазах воздушные реакторы. Для их изготовления требуется большое количество меди, что, в какой-то степени, снижает преимущество этих схем.

Недостатком встречно- параллельных схем являются большие значения переменной ЭДС в контуре уравнительного тока, из-за чего приходится увеличивать индуктивность уравнительных дросселей, и следовательно, габариты, массу и стоимость последних.
В схемах с двумя комплектами вентилей при одном направлении вращения в выпрямительном режиме работает одна группа вентилей, а при противоположном- другая. При этом, в то время как одна группа вентилей работает в выпрямительном режиме, другая подготовлена к режиму инвертирования.

Процесс реверса может проходить двумя разными способами:

 

  1. без запирания неработающей группы(совместное управление);
  2. с запиранием неработающей группы(раздельное управление).


24 Совместное управление комплектами реверсивных ТП. Природа уравнительных токов.

Системы с совместным управлением подразделяются на два типа:

 

  1. aСистемы с одноканальным управлением, или системы с жестким однозначным согласованием углов управления реверсивных групп 1 2;
  2. Системы с двухканальным управлением, или системы с автоматическим регулированием уравнительного тока.


aВ одноканальных системах имеется лишь один канал управления, по которому осуществляется одновременное воздействие на углы управления обеих вентильных групп. При этом обеспечивается однозначное жесткое соответствие между углами управления 1 2 aгрупп, т.е. каждому значению угла управления первой группы 1 aсоответствует строго определенное значение угла управления другой группы 2a. Соотношение между углами 1 2 определяется принятым законом согласования, характеристиками системы управления и ее настройкой.

В двухканальных системах имеются два отдельных канала управления. Один из каналов воздействует на работающую группу вентилей и тем самым определяет основной режим работы электропривода. Второй канал управления воздействует на неработающую группу вентилей и служит для регулирования величины уравнительного тока. Поэтому двухканальные системы управления называют также системами с автоматическим регулированием уравнительного тока.
Из-за равенства средних значений ЭДС выпрямительной и инверторной групп при линейном (симметричном) согласовании постоянная составляющая выпрямленной ЭДС в уравнительном контуре равна нулю. Однако, сумма мгновенных значений ЭДС в этом контуре не равна нулю и вызывает протекание уравнительного тока. Последний имеет пульсирующий характер.

 

25 Согласование статических характеристик реверсивных групп







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.