Здавалка
Главная | Обратная связь

Базовые операции Алгебры A



Материал этой лекции излагается на несколько более формальном уровне, чем в предыдущих лекциях. Используемые понятия определяются, по существу, так же, как и в лекции 3, но для удобства и обеспечения точности изложения мы повторим определения.

Пусть r – отношение, A – имя атрибута отношения r, T – имя соответствующего типа (т. е. типа или домена атрибута A), v – значение типа T. Тогда:

· заголовком Hr отношения r называется множество атрибутов, т.е. упорядоченных пар вида <A, T>. По определению никакие два атрибута в этом множестве не могут содержать одно и то же имя атрибута A;

16 Нельзя не упомянуть еще и о том, что «алгебра» Кодда в действительности не является алгеброй отношений в математическом смысле, поскольку ее операции применимы не ко всем отношениям. В отличие от этого Алгебра A – это «настоящая» алгебра, в которой отсутствуют какие-либо ограничения на операнды операций.

  • кортеж tr, соответствующий заголовку Hr, – это множество упорядоченных триплетов вида <A, T, v>, по одному такому триплету для каждого атрибута в Hr;
  • тело Br отношения r – это множество кортежей tr. Заметим, что (в общем случае) могут существовать такие кортежи tr, которые соответствуют Hr, но не входят в Br.

Заметим, что заголовок – это множество (упорядоченных пар вида <A, T>), тело – это множество (кортежей tr), и кортеж – это множество (упорядоченных триплетов вида <A, T, v>). Элемент заголовка – это атрибут (т. е. упорядоченная пара вида <A,T>); элемент тела – это кортеж; элемент кортежа – это упорядоченный триплет вида <A, T, v>. Любое подмножество заголовка – это заголовок, любое подмножество тела – это тело, и любое подмножество кортежа – это кортеж.

Определим несколько основных операций (как будет показано далее, некоторые из них избыточны). Каждое из последующих определений состоит из: формальной спецификации ограничений (если они имеются), применимых к операндам соответствующей операции; формальной спецификации заголовка результата этой операции; формальной спецификации тела этого результата и неформального обсуждения формальных спецификаций.

Во всех формальных спецификациях exists обозначает квантор существования; exists tr означает «существует такой tr, что». Символ « » означает принадлежность одного множества другому; tr Br означает, что элемент tr принадлежит множеству Br. Выражение tr Br означает, что элемент tr не принадлежит множеству Br. Операции minus и union являются традиционными теоретико-множественными операциями взятия разности и объединения множеств.

Поскольку некоторые базовые операции Алгебры A имеют названия обычных логических операций, чтобы избежать путаницы, имена реляционных операций берутся в угловые скобки: <NOT>, <AND>, <OR> и т. д. В исходный базовый набор операций входят операции реляционного дополнения <NOT>, удаления атрибута <REMOVE>, переименования атрибута <RENAME>, реляционной конъюнкции <AND> и реляционной дизъюнкции <OR>.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.