Здавалка
Главная | Обратная связь

Новый способ рассуждать



 

Написав две книги в соавторстве с друзьями – физиком Стивеном Хокингом и духовным наставником Дипаком Чопрой, я приобрел ценнейший жизненный опыт. Их мировоззрения настолько далеки друг от друга, что могли бы происходить из разных вселенных. Мое видение жизни более или менее такое же, как у Стивена, то есть это взгляд ученого. А вот от Дипакова отличается изрядно, и, видимо, поэтому мы назвали нашу книгу «Война мировоззрений»[133], а не «Правда чудесно, что мы во всем друг с другом согласны?»

Дипак пылко убежден в том, во что верит, и, пока мы вместе ездили, он все время пытался обратить меня в свою веру и поставить под сомнение мой подход к пониманию мира. Он называл его редукционистским, поскольку я считаю, что математические законы физики могут рано или поздно объяснить в природе всё, в том числе и человека. Как и большинство других ученых, я считаю – и уже говорил об этом, – что всё, включая, опять-таки, нас самих, состоит из атомов и элементарных частиц материи, которые воздействуют друг на друга посредством четырех фундаментальных сил природы, и, если понять, как оно все работает, можно – по крайней мере, в принципе, – объяснить все происходящее в мире. На практике, разумеется, мы не располагаем ни всеми нужными данными об окружающей среде, ни достаточно мощными компьютерами, чтобы применить фундаментальные теории к анализу явлений вроде человеческого поведения, и потому вопрос о том, управляют ли законы физики умом Дипака, остается открытым.

Я в принципе не возражал, что Дипак меня характеризует как редукциониста, однако ощетинивался, когда он говорил это вслух, потому что произносил он это таким тоном, что я чувствовал себя неловко и насупленно: можно подумать, будто человек, у которого есть душа, не может разделять моих взглядов. По чести сказать, на собраниях поклонников Дипака я иногда ощущал себя, как ортодоксальный ребе на съезде производителей свинины. Мне всегда задавали наводящие вопросы типа: «Ваши уравнения сообщают вам, что я переживаю, глядя на картины Вермеера или слушая симфонию Бетховена?» или «Если ум моей жены на самом деле и волны, и частицы одновременно, как вы объясните ее любовь ко мне?» Приходилось признавать, что ее любовь к нему я объяснить не могу. С помощью уравнений я никакую любовь объяснить не в силах. С моей точки зрения, речь вообще не об этом. Речь вот о чем: как инструмент понимания физического мира, если не нашего умозрительного опыта (во всяком случае, пока), математические уравнения достигли беспрецедентного успеха.

Пусть мы не умеем рассчитывать погоду на следующую неделю, отслеживая движения каждого атома и применяя фундаментальные принципы атомной и ядерной физики, однако есть наука метеорология, использующая сложные математические модели, и завтрашнюю погоду она предсказывает неплохо. Мы применили науку и к исследованию океана, света и электромагнетизма, свойств материалов, заболеваний и десятков других аспектов нашей повседневности так, чтобы использовать накопленное знание в блестящих практических целях, о каких всего несколько столетий назад никто и не мечтал. Сегодня – по крайней мере, среди ученых, – в действенности математического подхода к пониманию физического мира практически никто не сомневается. Однако господствующими подобные взгляды стали далеко не сразу.

Принятие современной науки как метафизической системы, основанной на видении, что природа ведет себя в соответствии с определенными закономерностями, началось с греков, но наука не добилась первого убедительного успеха в применении своих законов вплоть до XVII века. Огромен скачок от философских идей Фалеса, Пифагора и Аристотеля к взглядам Галилея и Ньютона. И все же две тысячи лет – многовато даже для такого скачка.

 

* * *

 

Первым камнем преткновения на пути принятия греческого наследия и дальнейшего строительства с опорой на него стало завоевание римлянами Греции в 146 году до н. э. и Месопотамии – в 64-м до н. э. Расцвет Рима стал началом многовекового заката интереса к философии, математике и науке даже среди грекоговорящей интеллектуальной верхушки, поскольку римляне с их практическим умом не слишком ценили эти области исследования. Замечание Цицерона[134]дивно передает презрение римлян к теоретическим изысканиям: «Греки, – говорил он, – премного почитали геометров, и, соответственно, блистательнее всего у них развивалась математика. Однако мы определили предел этому искусству полезностью в измерении и счете». Так все и было: за примерно тысячу лет существования Римской республики и ее наследницы, Римской империи, римляне добились масштабных и впечатляющих инженерных успехов благодаря, разумеется, навыкам в измерениях и счете, однако, насколько нам известно, в тот период не возникло ни единого римского математика, достойного упоминания. Этот поразительный факт свидетельствует о громадном воздействии культуры на развитие математики и науки.

Хоть Рим и не обеспечил благоприятных для науки условий, после распада Западной Римской империи в 476 году н. э. все стало еще хуже. Города сжались, установилась феодальная система[135], христианство завладело Европой, и центрами интеллектуальной жизни сделались провинциальные монастыри, а чуть позднее – школы при соборах, а это значит, что образование сосредоточилось на религиозных вопросах, исследования же природы стали считаться легкомысленными и недостойными. Постепенно интеллектуальное наследие греков было для Западного мира утеряно.

К счастью для науки, в арабском мире правящий мусульманский класс, напротив, счел греческое знание ценным. Речь не о том, что в арабском мире искали знания ради него самого – такой поиск поощрялся исламской идеологией не больше, чем христианством. Однако состоятельные арабские покровители желали финансировать переводы греческих научных трудов на арабский, поскольку считали, что греческая наука – штука полезная. И, конечно же, несколько сотен лет[136]средневековые исламские ученые сами добивались замечательных успехов в прикладной оптике, астрономии, математике и медицине, обогнав европейцев, чья интеллектуальная традиция замерла без развития[137].

Тем не менее, к XIII–XIV векам[138], когда европейцы начали пробуждаться от длительной дремы, наука в исламском мире пришла в значительный упадок. Случился он, похоже, по нескольким причинам. Во-первых, консервативные религиозные силы принялись навязывать суженное понимание практической применимости, кою считали единственным приемлемым оправданием научным занятиям. Во-вторых, для процветания науке нужно процветающее общество, у которого есть возможности частного или государственного покровительства, поскольку большинство ученых не могло выживать в условиях открытого рынка. В поздние Средние века, однако, арабский мир подвергался атакам внешних сил – от Чингисхана до крестоносцев, а изнутри его раздирали междоусобицы. Ресурсы, прежде выделявшиеся на искусства и науки, теперь поглощала война – и борьба за выживание.

Еще одна причина упадка наук: школы, составившие значимую часть интеллектуальной жизни в арабском мире, не ценили своего положения. Эти школы назывались медресе и были благотворительными фондами, существовавшими на религиозные пожертвования, а основатели и попечители этих школ к наукам относились с подозрением. В результате все обучение должно было сосредоточиваться на религии и исключать философию и науку[139]. Любое преподавание этих предметов – вне школы. За неимением учреждения, поддерживавшего и объединявшего их, ученые отдалились друг от друга, что создало серьезную преграду для углубленного научного обучения и исследований[140].

Ученые не могут существовать в вакууме. Даже величайшие невероятно много получают от общения с коллегами в своей области. Недостаток контакта между исследователями в исламском мире создал неблагоприятную среду для перекрестного умственного опыления, необходимого прогрессу. Более того, без полезной здоровой критики стало непросто держать в рамках распространение теорий, которым не хватало эмпирической базы, и трудно собрать критическую массу поддержки тем ученым и философам, кто сомневался в привычных истинах.

Сопоставимое интеллектуальное удушье случилось и в Китае, другой великой цивилизации[141], которая могла бы развить современную науку прежде европейцев. Население Китая в период Высокого Средневековья (1200–1500 годы) составляло более ста миллионов человек, что примерно вдвое больше, чем в Европе того периода. Но китайская система образования, подобно той, что существовала в исламском мире, оказалась куда слабее развивавшейся в Европе – во всяком случае, в отношении науки. Ее строго контролировали и сосредоточивали на литературе и нравственном совершенствовании, а научным нововведениям и научному творчеству внимания уделяли мало. Положение дел практически не менялось, начиная с первых монархов династии Мин (1368 год) и до XX века. Как и в арабском мире, были достигнуты лишь скромные успехи в науке (в отличие от техники), и дались они не благодаря, а вопреки образовательной системе. Мыслителям, критиковавшим интеллектуальный «статус кво» и пытавшимся развить и упорядочить интеллектуальные инструменты, необходимые для поддержки жизни ума, сильно противодействовали – мешали и применению эмпирических данных для углубления познаний. Индийский[142]правящий класс, приверженный кастовому общественному устройству, тоже предпочитал стабильность в ущерб интеллектуальному совершенствованию. В результате, хоть и в арабском мире, и в Китае, и в Индии возникли великие мыслители в отдельных областях знания, однако ученых, равных тем, кто позднее сотворил на Западе современную науку, – не было.

 

* * *

 

Возрождение науки в Европе[143]началось ближе к концу XI века, когда монах-бенедиктинец Константин Африканский начал переводить древнегреческие медицинские трактаты с арабского на латынь. Как и в арабском мире, желание учить греческую мудрость произрастало из практических соображений, и первые переводы подогрели аппетит к переводу и других практических работ по медицине и астрономии. В 1085 году во время христианского похода на Испанию в руки к христианам попали целые библиотеки арабских книг, и за несколько следующих десятилетий множество их оказалось переведено, отчасти благодаря щедрому финансированию заинтересованных местных епископов.

Влиятельность новообретенных трудов трудно себе представить: вообразите, что современные археологи наткнулись на переводы табличек с древними вавилонскими текстами и обнаружили, что в них представлены научные теории куда сложнее наших. В следующие несколько столетий финансирование переводов среди светской и торговой элиты эпохи Возрождения стало символом положения в обществе. Вновь добытое знание распространилось за пределы Церкви и стало своего рода валютой, собираемой богатеями так, как нынче собирают предметы искусства, – и, разумеется, богатеи кичились своими книгами и картами, как в наши дни – скульптурами или живописными полотнами. Постепенно вновь возросшая ценность знания[144], независимого от его практической применимости, привела к почитанию научного поиска. Со временем это почитание посягнуло на церковное «владение» истиной. С истиной, открытой Писанием и церковной традицией, взялась состязаться другая – истина, открытая природой.

Но одного лишь перевода и чтения древнегреческих трудов для «научной революции» недостаточно. Развитие нового учреждения[145], университета, – вот что действительно преобразило Европу. Университеты стали движущей силой развития науки в современном нам виде, вывели Европу на передовой край науки на много веков и дали случиться величайшим научным прорывам, какие видел белый свет.

Революцию образования[146]питало укреплявшееся благоденствие и обилие профессиональных возможностей для хорошо образованной публики. Города вроде Болоньи, Парижа, Падуи и Оксфорда приобрели репутацию центров учености, студенты и наставники тянулись туда во множестве. Преподаватели начинали работу либо самостоятельно, либо под покровительством уже существовавшей школы. Постепенно из них сложились добровольные ассоциации – по образу ремесленных гильдий. Хотя ассоциации эти называли себя «университетами», поначалу то были просто объединения без земельной собственности и определенного месторасположения. Университеты в знакомом нам виде возникли несколькими десятилетиями позже: в Болонье – в 1088 году, в Париже – около 1200-го, в Падуе – около 1222-го, в Оксфорде – к 1250-му. Центром внимания в университетах стала естественная наука, а не религия, и ученые собирались в них общаться и вдохновлять друг друга[147].

Нельзя сказать, что университет средневековой Европы был райскими кущами. Например, даже в 1495 году немецкие власти сочли необходимым недвусмысленно запретить всем, имеющим отношение к университету, обливать первокурсников мочой – этого указа более не существует, однако я по-прежнему требую от своих студентов подчинения ему. Преподаватели же частенько не располагали подходящей аудиторией и вынуждены были читать лекции в доходных домах, церквях или даже борделях. Более того, педагогам обычно платили напрямую сами студенты – они могли нанимать и увольнять своих преподавателей. В Университете Болоньи бытовало еще одно причудливое отклонение от принятой в наши дни нормы: студенты штрафовали преподавателей за беспричинный пропуск занятия или опоздание – или же за неспособность ответить на трудный вопрос. А если лекция оказывалась неинтересной или ее читали слишком медленно или слишком быстро, учащиеся вопили и буянили. Агрессивные наклонности студентов настолько вышли в Лейпциге из берегов, что университету пришлось вменить правило, запрещающее швырять в преподавателей камни.

Вопреки этим практическим трудностям европейские университеты сильно поддержали научный прогресс – отчасти тем, что давали людям делиться соображениями и обсуждать их вместе. Ученые в силах выдержать отвлечения в виде вопящих студентов или даже – иногда – брошенный в них пузырь с мочой, а вот без академических семинаров, которым конца не видать, – немыслимо. Ныне бо́льшая часть научных новшеств произрастает из университетских исследований, как и должно быть, потому что именно в них вкладывается львиная доля финансирования фундаментальных разработок. Но, что исторически не менее важно, университеты были средоточием ума.

Считается, что научная революция, которая отдалила нас от аристотелизма, преобразила наши взгляды на природу и общество и создала основу того, кто мы есть ныне, началась с гелиоцентрической теории Коперника и достигла пика в Ньютоновой физике. Но такая картинка – упрощение: хоть я и применяю словосочетание «научная революция» для удобства и краткости, ученые, связанные с ней, имели крайне разнообразные цели и взгляды, а не являли собой единую команду, сознательно пытавшуюся создать новую систему мышления. Что еще важнее, изменения, описываемые как «научная революция», на самом деле происходили постепенно: грандиозный храм знания, построенный великими умами 15501700-х годов, и его вершина, Ньютон, не возникли из ниоткуда. Тяжкий труд закладки фундамента под эту постройку производили средневековые мыслители первых европейских университетов.

Громадная часть той работы была проделана группой математиков в Мёртонском колледже, Оксфорд, между 1325-м и 1359-м годами. Большинство людей знает, хотя бы смутно, что греки измыслили само представление о науке, а современная наука возникла во времена Галилея. Средневековой же науке почтения перепадает немного. Что печально, поскольку средневековые ученые добились удивительных результатов вопреки эпохе, в которой люди обыкновенно оценивали истинность высказывания не по эмпирическим доказательствам, а исходя из того, насколько хорошо оно вписывалось в уже существовавшую систему основанных на религии взглядах, – то есть вопреки культуре, враждебной науке в современном понимании.

Философ Джон Сёрль [Сёрл] писал об одном случае, иллюстрирующем фундаментальную разницу понятий, в которых средневековые мыслители видели мир, с нашими. Он рассказывал о готическом храме в Венеции под названием Мадонна делл’Орто (Мадонна Сада). Изначально церковь собирались назвать в честь Святого Христофора, но пока храм строили, в соседнем саду откуда ни возьмись появилась статуя Мадонны. Название изменили, поскольку решили, что статуя упала с небес, и это явление сочли чудом. В те времена никаких сомнений в сверхъестественных причинах появления статуи не возникло – как не возникло бы сомнений в обыденном объяснении в наше время. «Даже если бы эту статую сейчас нашли в садах Ватикана, – писал Сёрл, – церковное начальство не стало бы заявлять, что она свалилась с неба»[148].

 

Библиотека Мёртонского колледжа, Оксфорд

 

Как-то раз я заговорил о достижениях средневековых ученых на одной вечеринке. Сказал, что меня впечатляет их работа – с учетом культуры, в которой они жили, и тягот, с которыми сталкивались. Мы, ученые, ныне жалуемся на время, профуканное на грантовые заявки, но у нас хотя бы кабинеты отапливаются, и нам не нужно охотиться на кошек[149], чтоб было чем поужинать, когда в городе все неважно с продовольствием. Не говоря уже о том, чтобы спасаться от Черной смерти 1347 года, унесшей половину населения.

На той вечеринке было полно ученых, и потому человек, с которым я разговаривал, не отреагировал на мои рассуждения так, как большинство людей, – то есть не бросился за новым бокалом «шардоннэ», внезапно осознав, что оно закончилось. Моя собеседница, напротив, с изумлением переспросила: «Средневековые ученые? Да ладно вам. Они оперировали без наркоза. Они составляли снадобья из сока латука, цикуты и желчи дикого борова. Сам Фома Аквинский, кажется, верил в ведьм?» Тут-то она меня к стенке и приперла. Я понятия не имел обо всем этом. Но потом проверил, и она оказалась права. И все же, несмотря на ее по всей видимости энциклопедические знания определенных сторон средневековой медицинской практики, она не слыхала о более значимых начинаниях в области физики, которые по сравнению с состоянием средневекового знания в других областях показались мне совсем уж чудесными. И потому, хоть и пришлось мне признать, что к средневековому врачу, прибудь он в наш век на машине времени, я бы не пошел, в отношении прогресса, которого средневековые ученые добились в физических изысканиях, я в своей правоте не сомневался.

Так что же они насвершали, эти забытые герои физики? Для начала, из всех разновидностей изменений, обдуманных Аристотелем, они выделили одну – смену положения в пространстве, то есть движение – как самую фундаментальную. Это глубокое и точное наблюдение: большая часть наблюдаемых нами изменений зависит от конкретных веществ в составе материи – протухание мяса, испарение воды, падение листвы с деревьев. Для ученого, ищущего нечто всеобъемлющее, эти процессы не слишком показательны. Законы движения же, наоборот, – фундаментальны и распространяются на любую материю. Но вот еще почему законы движения особенны: на субмикроскопическом уровне они – причина всех наблюдаемых нами макроскопических изменений. Это оттого, что, как мы уже поняли – и как предполагали некоторые древнегреческие атомисты, – многие виды изменений, которые мы переживаем в будничной действительности, можно в конечном счете понять, анализируя законы движения, которым подчиняются базовые строительные блоки материи – атомы и молекулы.

Хотя ученые из Мёртона всеобъемлющих законов движения не открыли, чутье подсказывало им, что законы эти существуют, и они подготовили почву для открытия – тем, кто пришел на века позже. Важнее всего созданная ими зачаточная теория движения, не имевшая ничего общего с наукой, изучавшей другие виды перемен, – и ничего общего с понятием о предназначении.

 

* * *

 

Задача, которую мёртонские ученые взялись решать, простой не была: математика, потребная даже для простейшего анализа движения, все еще оставалась примитивной. Но была и другая неувязка, и преодоление ее стало даже большей победой, чем успех силами наличной в то время математики, ибо речь не о технической преграде, а об ограничении, навязанном образом мыслей людей о мире: мёртонцы были, подобно Аристотелю, зажаты рамками мировосприятия, в котором время играло роль преимущественно качественного субъективного параметра.

Мы, воспитанные в культуре развитого мира, переживаем ход времени совсем не так, как его воспринимали жившие в ранние эпохи. Бо́льшую часть существования человечества время считалось чрезвычайно эластичной сеткой, растягивавшейся и сжимавшейся очень субъективно. Научиться воспринимать время как что-то не внутреннее, личное – трудный шаг с большими последствиями и столь же значимый прорыв в науке, каким было развитие языка или осознание, что мир можно постичь рассуждением.

К примеру, поиск закономерностей в продолжительности событий – представить, что камень, падающий с высоты в шестнадцать футов, всегда долетает до земли за одну секунду, было бы в эпоху мыслителей Мёртона революционным ви́дением. Для начала никто понятия не имел, как измерять время хоть с какой-то точностью, а о минутах и секундах никто и не слыхивал[150]. Первые часовые механизмы, показывающие часы одинаковой продолжительности, изобрели не раньше 1330 годов. До этого световой день, сколько бы ни длился, делили на двенадцать равных интервалов, а это означало, что «час» мог быть в июне в два с лишним раза дольше, чем в декабре (в Лондоне, например, он колебался от 38 до 82 современных минут). Из того, что это никого не беспокоило, следует, что людям ничего больше приблизительной качественной оценки проходящего времени не требовалось. И поэтому само понятие скорости – расстояния, преодоленного за единицу времени, – уж точно должно было казаться диковиной.

С учетом всех препятствий, то, что ученым Мёртона удалось создать понятийное основание исследования движения, кажется чудом. И все же они сформулировали первое в мире количественное правило движения – «мёртонское»[151]: «Расстояние, пройденное телом, равномерно ускоряющимся из положения покоя, равно расстоянию, пройденному телом, движущимся то же время со скоростью, половинной от предельной у ускоряющегося тела».

Ну и формулировочка, прямо скажем. Я с ней знаком давно, однако смотрю сейчас на нее и понимаю, что пришлось дважды прочитать, что написано, чтобы понять, о чем это. И все же смутность такого выражения служит определенной цели: она показывает, насколько проще стала наука с тех пор, как ученые поняли, как применять – и изобретать, вообще говоря, – подходящую математику.

В современном математическом языке расстояние, пройденное телом, равномерно ускоряющимся из состояния покоя, можно записать как (a х t2)/2. Вторая величина, расстояние, пройденное телом, движущимся то же время со скоростью, половинной от предельной у ускоряющегося тела, есть попросту (a х t) х t/2. Таким образом, приведенная формулировка мёртонского правила, переложенная на язык математики, такова: х t2)/2 = х t) х t/2. Она не просто компактнее, но и делает истинность высказывания мгновенно очевидной – по крайней мере, для всех, кто уже немножко знает алгебру.

Если ваши дни занятий алгеброй давно позади, спросите любого шестиклассника – он или она поймут написанное. Вообще-то средний шестиклассник в наши дни знает гораздо больше математики, чем даже самый передовой ученый в XIV веке. Можно ли будет утверждать то же самое о детях XXVIII века и ученых XXI-го – интересный вопрос. До сих пор владение математикой с каждым веком постоянно прогрессировало.

Бытовой пример того, о чем гласит правило Мёртона: если вы разгоняете автомобиль постоянно, с нулевой скорости до ста миль в час, вы пройдете то же расстояние, как если бы все время ехали со скоростью пятьдесят миль в час. Смахивает на то, как меня пилит моя мама за слишком прыткое вождение, но, хоть для нас с вами мёртонское правило – простой здравый смысл, мёртонцы не могли его доказать. Тем не менее, правило произвело некоторый фурор в интеллектуальном мире того времени[152]и быстро добралось и до Франции, и до Италии, и распространилось далее по Европе. Доказательство получилось довольно скоро, по ту сторону Ла-Манша, где в Университете Парижа трудились французские коллеги мёртонских ученых. Автор доказательства – Николай Орем (1320–1382), философ и теолог, позднее дослужившийся до епископа Лизьё. Чтобы произвести это доказательство, Орему потребовалось то же, что и всем физикам за всю историю науки, вновь и вновь: изобрести новую математику.

Раз математика – язык физики, недостаток подходящей математики не дает физику выражаться или даже рассуждать на заданную тему. Быть может, сложная незнакомая математика, понадобившаяся Эйнштейну, чтобы сформулировать общую теорию относительности, однажды вдохновила его сказать одной юной школьнице: «Не тревожьтесь о ваших трудностях с математикой – уверяю вас: мои куда больше»[153]. Или же, как говорил Галилей, «книга [природы] не может быть понята, если сначала не научиться понимать язык и читать буквы, которыми она написана. Она написана на языке математики, а знаки ее – треугольники, окружности и другие геометрические фигуры, без которых понять хоть одно слово – выше человеческих сил; без этого – лишь бродить в темном лабиринте»[154].

Дабы озарить светом этот темный лабиринт, Орем изобрел разновидность диаграмм, предназначенных для представления физики мёртонского правила. И хотя сам он понимал свои диаграммы не так, как мы в наши дни, можно считать их первым геометрическим представлением физики движения – а значит, и первым графиком.

Я всегда считал странным, что люди знают изобретателя математического анализа, хотя мало кто им пользуется, но при этом мало кто знает изобретателя графиков, однако ими пользуются все. Думаю, всё здесь оттого, что в наше время понятие графика представляется очевидным. Но в средние века мысль о том, что количества можно отображать линиями и фигурами в пространстве, была поразительно свежей и революционной, а может, и чуточку чокнутой.

Покажу вам, насколько трудно добиться даже самого простого изменения в образе человеческой мысли, – вспомним историю еще одного чокнутого изобретения, решительно нематематического: самоклеящиеся бумажки «Пост-ит», те листочки бумаги с клейкой полоской многоразового использования с одной стороны, которые можно легко приделывать к разным предметам. «Пост-ит» изобрел в 1974 году Арт Фрай, инженер-химик из компании «3М». Но предположим, что их тогда не изобрели, и вот прихожу я к вам, к инвестору, сегодня с этой затеей и бумажной пачечкой-прототипом. Вы тут же поймете, что это золотая жила, и ринетесь деньги вкладывать, да?

Как ни странно, а большинство-то людей, вероятно, не ринется: Фрай представил свою задумку маркетологам в «3М», компании, известной и клеящими продуктами, и новациями, и они как-то не вдохновились и решили, что продавать этот продукт будет непросто, потому что ему придется конкурировать по ценам с бумагой для заметок, которую новинка должна была вытеснить. Чего ж они не бросились к сокровищу, которое Фрай им предложил?[155]Потому что в до-«Пост-ит»-овую эпоху сама мысль, что кому-то может понадобиться лепить клочок бумаги со слабой клеевой полоской на вещи, была за пределами человеческого воображения. И потому Артуру Фраю труднее было изменить способ человеческого мышления, нежели изобрести новый продукт. Уж если с самоклеящимися бумажками пришлось принять неравный бой, можно лишь вообразить, до чего трудно пришлось тем, кто занимался вещами куда значимее.

К счастью, Орему для доказательства самоклеящиеся бумажки не требовались. Вот как он рассуждал. Для начала разметим время вдоль горизонтальной оси, а скорость – вдоль вертикальной. Теперь предположим, что некое тело начинает движение во временно й точке «нуль» и сколько-то времени движется с постоянной скоростью. Это движение представим в виде горизонтальной прямой. Если заштриховать площадь под этой прямой, получится прямоугольник. Постоянное ускорение же выглядит как прямая под некоторым углом, потому что со временем скорость меняется. Если закрасить область под этой прямой, получится треугольник.

 

График, иллюстрирующий мёртонское правило

 

Области под этими линиями – закрашенные участки – представляют скорость, умноженную на время, а это есть расстояние, пройденное телом. Рассуждая вот так и зная, как рассчитать площади прямоугольника и треугольника, легко показать, что мёртонское правило верно.

Орем не почитаем так, как до́лжно, потому, что издал он из своих работ немногое. Вдобавок, хоть я и объяснил, как мы интерпретировали бы его работу в наши дни, понятийный аппарат, который он применял, был и близко не таким подробным и количественным, какой применил я, и принципиально отличался от нашего современного представления о связи математики и физических количеств. Это свежее понимание возникнет из череды новых представлений о пространстве, времени, скорости и ускорении, и они – важнейший вклад великого Галилео Галилея (1564–1642).

 

* * *

 

Хоть средневековые ученые, трудившиеся в университетах в XIII–XIV веках, и продвинулись в развитии традиции рационального и эмпирического научного метода, великий взрыв европейской науки произошел не сразу. Общество и культуру Европы Позднего Средневековья сначала преобразили изобретатели и инженеры – то был период первых ласточек Возрождения, которое длилось, грубо говоря, с XIV по XVII век.

Эти новаторы раннего Возрождения создали первую цивилизацию, не влекомую преимущественно силой мышц. Водяные и ветряные колеса, новые виды механических сочленений и другие приспособления разрабатывались или совершенствовались и встраивались в деревенскую жизнь. Они питали энергией лесопилки, мукомольни и множество хитроумных инструментов. Техническая новизна их[156]с теоретической наукой была связана слабо, но она создала предпосылки для дальнейшего развития[157], принеся новые материальные богатства, которые помогли поддержать расцвет образования и грамотности, а также позволили осознать, что понимание природы может облегчить нам жизнь.

Предпринимательский дух раннего Возрождения породил одно техническое нововведение, прямо и мощно повлиявшее на дальнейшее развитие науки, да и общества в целом: печатный станок. Хотя китайцы придумали подвижной шрифт на несколько веков раньше – около 1040 года, – он был относительно непрактичен, поскольку в китайском применялись пиктограммы, а это означало, что литер должно быть много тысяч. В Европе же появление примерно в 1450 годах механических печатных станков с подвижными литерами изменило все. В 1483 году, к примеру, за подготовку набора книги печатники из Риполи просили втрое больше, чем писец – за переписывание одной книги. Однако в Риполи с готового набора могли произвести тысячу копий или даже больше, а писец – лишь одну. В результате всего за несколько десятилетий книг было напечатано больше, чем писцы в Европе смогли произвести за все предыдущие века, вместе взятые.

Печатный станок укрепил возникший средний класс и совершил переворот в обмене мыслями и сведениями по всей Европе. Знание и сведения внезапно сделались доступны куда большему числу граждан. В первые же несколько лет[158]были изданы первые математические тексты, а к 1600 году – почти тысяча. К тому же пошла новая волна восстановления античных текстов. Что не менее важно, люди со свежими замыслами внезапно обрели куда более широкую аудиторию, а те, кто, подобно ученым, жил изучением и развитием мыслей других людей, вскоре получил гораздо более прямой доступ к работам коллег.

Благодаря этим переменам в европейском обществе правящий класс оказался менее жестко ограничен и однороден, чем в исламском мире, Китае или Индии. Эти общества сделались неподатливыми и сосредоточились на консервативном мировосприятии. Европейскую элиту же, меж тем, мотало во все стороны из-за конкурирующих интересов города и деревни, церкви и государства, Папы и императоров, равно как и из-за требований новой светской интеллигенции и растущих потребительских желаний. Европейское общество развивалось[159], искусства и науки получали все больше возможностей меняться – и менялись, и в результате укреплялся и практический интерес к природе.

Интерес к природе сделался душой Возрождения – и в искусстве, и в науке. Само название эпохи означало новые начинания и в физическом существовании, и в культуре: Возрождение зародилось в Италии сразу вслед за эпидемией Черной смерти, унесшей жизни от трети до половины населения Европы, после чего движение ее замедлилось, и до северной Европы она дошла лишь в XVI веке.

В искусстве скульпторы Возрождения исследовали анатомию, а художники – геометрию, и те, и другие увлеклись созданием более точных отображений действительности на основе пристального наблюдения. Человеческие фигуры теперь изображали в естественном окружении и с анатомической точностью, а трехмерность изображениям придавали с помощью света, тени и линейной перспективы. Персонажи художников являли теперь реалистичные чувства, лица их лишились плоского, неземного качества, свойственного прежнему средневековому искусству. Музыканты Возрождения изучали акустику, архитекторы вглядывались в гармонию пропорций зданий. А ученые, увлеченные натурфилософией, которую мы ныне зовем наукой, по-новому начали относиться к сбору данных и извлечению из них выводов, отвлекшись наконец от применения чистого логического анализа, искаженного желанием подтвердить те или иные религиозные взгляды.

Леонардо да Винчи (1452–1519), вероятно, лучше всех воплощает научные и гуманистические идеалы того времени, не распознававшего четкой границы между наукой и искусствами. Ученый, инженер и изобретатель, он был еще и художником, скульптором, архитектором и музыкантом. Во всех своих начинаниях Леонардо пытался прозреть человеческий и природный миры через пристальное наблюдение. Его записки и исследования в науке и инженерном деле занимают более десяти тысяч страниц, как художник он не довольствовался простым наблюдением за позирующими моделями – он изучал анатомию и препарировал трупы. Ученые до него рассматривали природу в понятиях общих качественных черт, Леонардо же и его современники прилагали колоссальные усилия, чтобы увидеть мельчайшие точки природного промысла – и обращали меньше внимания на авторитет и Аристотеля, и Церкви.

Вот в таком интеллектуальном климате ближе к концу Возрождения и родился в 1564 году в Пизе Галилей, всего за два месяца до появления на свет другого титана – Уильяма Шекспира. Галилей был первым из семерых детей Винченцо Галилея, известного лютниста и теоретика музыки.

Винченцо происходил из почтенной семьи[160]– не в том смысле, в каком мы их себе представляем сейчас: люди, которые ездят на лисью охоту и пьют чай каждый день после обеда, а из тех, кто именем своим добивается получения заказа. Винченцо, может, хотел бы себе почтенности первого рода – он любил лютню и играл на ней, где только мог: гуляя по городу, верхом, стоя у окна, лежа в постели, но практика эта приносила ему в виде звонкой монеты немного.

Надеясь направить сына по пути благополучия, Винченцо отправил юного Галилео в Университет Пизы, учиться медицине. Однако юношу больше медицины интересовала математика, и он стал брать частные уроки по трудам Евклида и Архимеда – и даже Аристотеля. Много лет спустя он говорил друзьям, что лучше бы забросил университет и взялся за рисование и живопись. Винченцо же подталкивал его к более практическим занятиям, в соответствии с вековой отеческой теорией, что стоит пойти на некоторые компромиссы, но избежать жизни, в которой «ужин» означает «суп с конопляными семечками и говяжьи потроха».

Винченцо, узнав, что Галилео увлекся математикой, а не медициной, должно быть, счел, что сын выбрал специальность «жизнь на наследство», каким бы чахлым то ни было. Но это все едва ли имело значение. Галилео не доучился ни до чего – ни в медицине, ни в математике, ни в чем бы то ни было еще. Он бросил занятия и вступил на жизненный путь, на котором, несомненно, его ожидало безденежье, а частенько – и долги.

Оставив учебу, Галилей поначалу кормился за счет частных уроков математики. Как-то раз он прослышал о некой незначительной вакансии в Университете Болоньи. Хотя ему было двадцать три, он все равно предложил на это место себя, применив свежий подход к округлению – написал, что ему «около двадцати шести». Университет, видимо, искал сотрудника «около» чего-нибудь постарше и нанял тридцатидвухлетнего человека, еще и, вообще-то, доучившегося по специальности. И все-таки, даже через несколько веков, любого, кому отказали в найме на ученую должность, должно утешать: этот опыт у вас с Галилеем общий.

 

Галилео Галилей, с картины фламандского художника Юстуса Сустерманса, 1636 год

 

Двумя годами позже Галилей все же стал преподавателем в Пизе. Там он учил своему любимому Евклиду, а также преподавал курс по астрологии, нацеленный помочь студентам-медикам определять, когда пора делать пациенту кровопускание. Да, человек, столько сделавший для научной революции, наставлял начинающих врачей, как влияет положение Водолея на места постановки пиявок. Ныне астрология лишена всякого доверия, однако в прежние времена, пока мы еще мало что знали о законах природы, представление о том, что небесные тела влияют на наши жизни на Земле, казалось вполне разумным. В конце концов, правда же, что Солнце, да и Луна, как давно было известно, неисповедимо связаны с приливами и отливами.

Галилей составлял астрологические прогнозы и из личного интереса, и ради заработка, и брал со своих студентов по двенадцать скуди за прогноз. Если получалось пять прогнозов в год, ему удавалось удвоить свою учительскую ставку в шестьдесят скуди – ее едва хватало на жизнь. А еще его тянуло к азартным играм, а в ту пору, когда никто почти ничего не знал о математике вероятностей, Галилей стал не только первым, кто рассчитывал вероятность выигрыша, он еще и блефовал неплохо.

Ближе к тридцати, высокий, статный, светлокожий и слегка рыжеволосый Галилей людям нравился. Но его преподавательской практике в Пизе не суждено было длиться долго. Хоть в целом начальство он и чтил, но позволял себе саркастические высказывания и мог быть язвителен и к своими интеллектуальным противникам, и к университетским управленцам, если те гладили его против шерсти. В Пизе его однажды «погладили» так, что Галилей вышел из себя: университет упрямо настаивал, чтобы профессора носили академические облачения не только когда преподают, но и если просто перемещаются по городу.

Галилей, любивший писать стихи, в ответ сочинил стихотворение, посвященное университетскому начальству. Предмет сочинения – одежда, Галилей выступил против нее. По его мнению, это обман. К примеру, невеста могла бы взглянуть на своего жениха, будь он без одежды, и «Увидать, не мал ли он, иль французским хворям сдался, тот, кто так осведомлен, хошь бросай, а хошь – хватайся»[161]. Таким стихотворением парижан не умилишь. В Пизе оно тоже не понравилось, и юный Галилей опять оказался на рынке труда.

Как выяснилось, все к лучшему. Галилей вскоре получил приглашение работать близ Венеции, в Падуе, с начальным годовым заработком в 180 скуди, втрое выше его первой ставки, и позднее описывал пребывание там как лучшие восемнадцать лет своей жизни.

Ко времени переезда в Падую Галилей уже успел разочароваться в Аристотелевой физике[162]. По Аристотелю, наука состояла в наблюдении и теоретизировании. Для Галилея в этом не доставало ключевого шага – экспериментов, и в руках Галилея экспериментальная физика развилась в той же мере, в какой и теоретическая. Ученые веками ставили эксперименты, однако те в основном были направлены на иллюстрирование уже принятых взглядов. Ныне же, напротив, ученые проводят опыты ради строгой проверки своих взглядов. Эксперименты Галилея – нечто среднее. То были исследования – больше, чем просто иллюстрации, но пока все же не строгая проверка выводов.

У подхода Галилея к эксперименту есть две важнейших стороны. Во-первых, получая удивительный для себя результат[163], он его не отвергал – он сомневался в правильности своих рассуждений. Во-вторых, его эксперименты были количественными, что вполне революционно для его времени.

Эксперименты Галилея очень походили на те, которые ныне показывают в средней школе на уроках физики, хотя, конечно, его лаборатория отличалась от современной школьной: в ней не было электричества, газа, воды и прикольного оборудования – а под «прикольным оборудованием» я подразумеваю, к примеру, часы. И потому Галилею приходилось быть Макгайвером[164]XVI века – создавать сложные приборы из того, что в эпоху Возрождения могло заменить скотч и вантуз. К примеру, чтобы сделать себе секундомер, Галилей провертел дырочку в дне здоровенного ведра. Когда требовалось засечь протяженность того или иного события, он наливал в эту емкость воду, собирал вытекшее и взвешивал его – масса воды была пропорциональна продолжительности события.

Галилей применял эти «водяные часы», пытаясь разобраться с противоречивыми вопросами свободного падения – процесса, при котором предмет падает на землю под воздействием силы тяжести. Для Аристотеля свободное падение – разновидность естественного движения, которое подчиняется определенным ключевым правилам, например: «Если половинный вес проходит расстояние за данное время, двойной вес [то есть целый] пройдет это же расстояние за половину времени». Иными словами, предметы падают с постоянной скоростью, пропорциональной их весу.

Если вдуматься, это вполне соответствует здравому смыслу: камень падает быстрее древесного листка. И поскольку измерительных и записывающих инструментов под рукой еще не было, а об ускорении знали мало, Аристотелево описание свободного падения должно было казаться разумным. Но если вдуматься, оно же и противоречит здравому смыслу. Как отмечал астроном-иезуит Джованни Риччоли, даже мифологический орел, убивший Эсхила, уронив ему на голову черепаху, интуитивно понимал, что предмет, сброшенный кому-нибудь на голову, нанесет больший урон, если сбросить его откуда-нибудь повыше[165], а это значит, что предметы, падая, ускоряются. Ввиду всех этих рассуждений успела сложиться давняя традиция думать о свободном падении и так, и эдак, и различные ученые в разные века выражали свой скептицизм относительно Аристотелевой теории.

Галилей знал о высказанной критике и хотел провести личное исследование этого явления. Понимал он и то, что его водяные часы недостаточно точны для экспериментов с падающими предметами, а потому требовалось придумать процесс, протекавший медленнее, но все равно по тем же физическим принципам. Он решил измерить время, нужное гладко отполированным бронзовым шарам, чтобы скатиться по гладким мосткам, наклоненными под разными углами.

Изучать свободное падение, замеряя время качения шаров по пандусам, – все равно что покупать наряд, исходя из того, как он смотрится в интернете: нельзя исключать, что на вас он будет смотреться не так, как на роскошной модели. Однако, вопреки опасностям, подобный ход мысли есть суть мышления современных физиков. Искусство планирования хорошего эксперимента состоит преимущественно в понимании, какие стороны задачи важно сохранить, а на какие не обращать внимания – и как потом толковать полученные результаты.

В случае свободного падения гений Галилея должен был измыслить эксперимент с катящимися шарами, не позабыв о двух критериях. Первый: требовалось, чтобы процесс происходил медленнее – тогда можно успеть все измерить; второй, не менее важный: минимизировать воздействие сопротивления воздуха и трения. Хотя трение и сопротивление воздуха – часть нашего повседневного опыта, Галилей чуял, что они смущают простоту фундаментальных законов, правящих природой. Камни в естественных условиях, может, и падают быстрее перьев, но законы, стоящие за любым падением, предполагал Галилей, постановляют, что в вакууме и камень, и перышко будут падать с одной и той же скоростью. Нужно «освободиться от этих трудностей, – писал он, – и, открыв и явив эти теоремы для случая, когда отсутствует сопротивление, […] применять их [к реальному миру]… с теми ограничениями, какие покажет опыт»[166].

Для небольших углов наклона в эксперименте Галилея все происходило довольно медленно, и данные добывались без особых усилий. Он заметил, что при малых углах расстояние, пройденное шаром, всегда пропорционально квадрату времени в пути. Можно математически доказать: это значит, что шар набирает скорость равномерно, то есть равномерно ускоряется. Более того, Галилей отметил и то, что скорость падения шара не зависит от его массы.

Поразительно было другое: это утверждение оставалось верным и когда пандус наклоняли под большими углами; каким бы ни был угол наклона, расстояние, пройденное шаром, не зависело от массы шара и было пропорционально квадрату времени, потребного для качения. Если это верно для наклона в сорок, пятьдесят, шестьдесят или даже семьдесят градусов, чего б и не девяносто? И вот тут-то Галилей приводит очень современное рассуждение: он говорит, что его наблюдения за шаром, скатывающимся по наклонной плоскости, должны быть верны и для свободного падения, которое можно рассматривать как «предельный случай» наклона плоскости под прямым углом. Иными словами, он рассудил гипотетически, что, если приподнять плоскость вплоть до вертикального положения, и шар при этом фактически падал, а не катился, скорость он все равно будет набирать равномерно, а это означает, что усмотренная им для случая наклонных плоскостей закономерность распространяется и на свободное падение.

Так Галилей заместил Аристотелев закон свободного падения своим собственным. Аристотель говорил, что все тела падают со скоростью, пропорциональной их весу, но Галилей, постулируя идеальный мир, в котором фундаментальные законы природы являют себя наблюдателю, пришел к другому выводу: в отсутствие сопротивления среды – к примеру, воздуха, – все тела падают с одним и тем же постоянным ускорением.

 

* * *

 

Помимо склонности к математике Галилей тяготел и к абстрактному мышлению. И до того оно было у него развито, что ученый временами любил обдумывать что-нибудь целиком и полностью умозрительно. Не-ученые называют это фантазиями, ученые – мысленными экспериментами, по крайней мере – когда говорят о физике. Хорошо в мысленных экспериментах то, что их можно проводить целиком у себя в голове и не возиться со сборкой работающих приборов, но с их помощью проверять логические следствия тех или иных соображений. Таким манером, потопив Аристотелеву теорию свободного падения посредством практических экспериментов с наклонными плоскостями, Галилей, применив мысленный эксперимент, присоединился к обсуждению одного из предметов Аристотелевой физики, подвергшегося острейшей критике, а именно – движения снарядов.

Что движет снарядом после того, как к нему приложена начальная сила? Аристотель предположил, что его толкают частицы воздуха, устремляющиеся вслед снаряду, но даже сам он к своему объяснению относился критически, и мы в этом уже убедились.

Галилей взялся разбираться с этой темой, вообразив корабль в море: в трюме моряки играют в салки, летают бабочки, в склянке на столе плавают рыбки, из бутылки капает вода. Он «заметил», что все это происходит одинаково независимо от того, движется корабль равномерно или же покоится. Галилей заключил, что, поскольку все на корабле движется вместе с ним, движение корабля должно «запечатлеваться» на предметах у него на борту, и когда корабль начинает двигаться, его движение становится чем-то вроде подложки для всего, что на нем находится. Может ли движение снаряда быть на нем «запечатлено»? Может ли это быть силой, поддерживающей полет пушечного ядра?

Размышления Галилея привели его к глубочайшему выводу – и к еще одному разрыву с Аристотелевой физикой. Отвергнув утверждение Аристотеля о том, что снаряду для движения нужна причина – сила, Галилей заявил, что все тела, находящиеся в равномерном движении, обыкновенно продолжают двигаться равномерно и дальше, в точности как тела в покое покоятся и далее.

Под «равномерным» Галилей понимал движение по прямой и с постоянной скоростью. Положение «покоя» – попросту пример равномерного движения, в котором скорость равна нулю. Наблюдение Галилея стало называться законом инерции. Ньютон позднее видоизменил его и сделал первым законом движения.

Через несколько страниц после формулировки закона Ньютон добавляет, что открыл его Галилей – редкий случай, когда Ньютон вообще отдавал кому-нибудь должное[167].

На основании рассказанного мной о Галилее отцу, он, любивший сравнивать любого значимого человека с какой-нибудь фигурой в иудейской истории, назвал Галилея Моисеем науки. Он сказал, это потому, что Галилей вывел науку из Аристотелевой пустыни к земле обетованной. Сравнение это тем более действительно вот из-за чего: подобно Моисею, сам Галилей до обетованной земли не добрался – не выделил гравитацию как силу, не смог описать ее математически, чего пришлось ждать до Ньютона, и по-прежнему цеплялся за некоторые Аристотелевы взгляды. К примеру, Галилей верил в некое «естественное движение», которое не равномерно, однако не требует силы для того, чтобы начаться: движение вокруг центра Земли. Галилей, судя по всему, думал, что это разновидность естественного движения, позволяющего телам никуда не деваться с вращающейся планеты.

Чтобы родилась настоящая наука движения, необходимо было отринуть и эти пережитки Аристотелевой системы взглядов. По этим причинам один историк писал о Галилеевых представлениях о природе как о «невозможной амальгаме несовместимых элементов, порожденной взаимоисключающими мировоззрениями, меж которых он оказался»[168].

 

* * *

 

Вклад Галилея в физику подлинно революционен. Однако знаменит он в наши дни в основном конфликтом с Католической церковью, возникшим из-за его утверждения, противоположного взглядам Аристотеля (и Птолемея), что Земля – не центр Вселенной, а лишь обычная планета, вращающаяся, как и все остальные, вокруг Солнца. Представление о гелиоцентрической Вселенной существовало со времен Аристарха, с III века до н. э., но за современное видение можно благодарить Коперника (1473–1543).

Коперник – довольно противоречивый революционер науки, не ставивший цели критиковать метафизику своего времени; он просто разбирался с древнегреческой астрономией: ему не давало покоя, что для того, чтобы придать геоцентрической модели Вселенной[169]устойчивость, необходимо было водить множество специальных геометрических построений. Его модель, напротив, была куда точнее и проще, даже изящнее. В согласии с духом Возрождения он ценил не только научную достоверность, но и эстетичность замысла. «Думаю, в это проще верить, – писал он, – нежели вносить путаницу множеством Сфер, какие нужны, чтобы Земля оставалась в средине»[170].

Коперник сначала, в 1514 году, описал свою модель только для себя, а потом не одно десятилетие производил астрономические наблюдения в поддержку этой модели. Но, подобно Дарвину столетия спустя, он излагал свои представления в кругу близких доверенных друзей, боясь осуждения народа и Церкви. И все же Коперник ощущал опасность, а также понимал, что при должных политических маневрах реакция Церкви может быть смягчена, и когда Коперник наконец все же опубликовал свою работу, он посвятил ее Папе, с пространным объяснением, почему его взгляды – не ересь.

В конце концов труд Коперника так и остался достоянием ученых кругов: он не был опубликован вплоть до 1543 года, а к тому времени Коперник уже лежал на смертном одре – говорят, свою напечатанную книгу он увидел лишь в день смерти. Как ни удивительно, даже после издания книга ни на что не повлияла, пока позднейшие ученые, в том числе Галилей, не приняли его взглядов и не начали говорить о них.

Хотя Галилей не сам придумал, что Земля – не центр Вселенной, он привнес нечто не менее важное: применив телескоп (который собрал сам, на основе гораздо более простой модели, изобретенной незадолго до этого), он обнаружил поразительные и убедительные доказательства этой модели.

Все началось случайно. В 1597 году Галилей писал и давал лекции в Падуе о Птолемеевой системе, почти никак не показывая, что сомневается в ее состоятельности[171]. Меж тем, примерно тогда же в Голландии произошел случай, напоминающий нам о том, как важно оказаться в нужном месте (Европа) в нужное время (в частности, всего через несколько десятилетий после Коперника). Случай, который в конце концов заставил Галилея сменить точку зрения, произошел с двумя детьми, которые играли в лавке никому не известного изготовителя очков по имени Ханс Липперсгей [Липперсхэй], – они приложили друг к другу две линзы и посмотрели сквозь них на флюгер на шпиле далекой городской церквушки. Он оказался увеличенным. Галилей позднее записал, что Липперсгей глянул сквозь эти две линзы, «одну выпуклую, другую вогнутую… и увидел неожиданное; вот и [изобрел] инструмент»[172]. Он создал подзорную трубу.

Мы склонны представлять себе развитие науки как череду открытий, каждое ведет к следующему путем усилий отдельных интеллектуальных исполинов, располагающих ясным и необычным видением. Но видение великих открытий в интеллектуальной истории куда чаще замутнено, чем ясно, а своими достижениями они обязаны в большей мере друзьям и коллегам – и удаче, – нежели выходит, если судить по легендам и по признаниям самих первооткрывателей. В данном случае подзорная труба Липперсгея давала всего двух– или трехкратное увеличение, и когда Галилей несколько лет спустя, в 1609 году, впервые о ней услышал, его это не очень впечатлило. Интересно ему стало лишь потому, что его друг Паоло Сарпи, описанный историком Дж. Л. Хейлброном как «непримиримо анти-иезуитский монах-энциклопедист», усмотрел в этом приспособлении потенциал – он подумал, что, если это изобретение усовершенствовать, его можно отлично применить для военных нужд Венеции, не укрепленного стенами города, чье выживание зависело от своевременного обнаружения угрозы вражеского нападения.

Сарпи обратился за помощью к Галилею, который, среди многого всякого, что делал ради подпитки своих доходов, занимался созданием научных инструментов. Ни Сарпи, ни Галилей никакой теорией оптики не владели, однако методом проб и ошибок Галилей за несколько месяцев смог создать прибор, позволявший девятикратное увеличение. Он подарил это преисполнившемуся благоговением Венецианскому сенату в обмен на пожизненное продление свой ставки и удвоения своей тогдашней платы за труды до тысячи скуди. Галилей постепенно усовершенствовал свой телескоп до тридцатикратного увеличения, а это практический предел для телескопа такой конструкции (плоско-вогнутый визир и плоско-выпуклый объектив).

Примерно в декабре 1609 года, когда Галилей уже добился от своего телескопа двадцатикратного увеличения, он обратил его ввысь и нацелился на крупнейший объект ночного небосвода – Луну. Это наблюдение – и другие, сделанные им же, – подарило нам лучшее для того времени доказательство, что Коперник верно определил место, которое планета Земля занимает в мироздании.

Аристотель утверждал, что небеса образуют отдельное царство, из другой материи, и оно подчиняется другим законам, из-за которых все небесные тела вращаются вокруг Земли. Галилей же увидел, что Луна, «неровная, шершавая, вся в вогнутостях и выпуклостях, не отличается от лика земного, изрезанного горными цепями и глубокими долами»[173]. Луна, иными словами, не казалась телом другого «царства». Галилей увидел также, что у Юпитера есть свои луны. Факт, что луны эти обращаются вокруг Юпитера, а не вокруг Земли, противоречил космологии Аристотеля, зато поддерживал представление о том, что Земля – не центр Вселенной, а лишь одна из многих планет в ней.

Отмечу: говоря, что Галилей «увидел» что-то, я не имею в виду, что он приставил телескоп к глазу, навел его куда-то и с восторгом узрел революционно свежий набор образов, будто посмотрел показ в планетарии. Напротив, его наблюдения требовали долгих, непростых и настойчивых усилий: ему приходилось часами щуриться в несовершенное, скверно установленное (по теперешним понятиям) стекло и пытаться извлечь хоть какие-то выводы из увиденного. Глядя на Луну, к примеру, он мог «видеть» горы, лишь неделю за неделей кропотливо описывая и интерпретируя движения теней, которые эти горы отбрасывают. Более того, он видел лишь одну сотую поверхности единовременно, и для того, чтобы создать сборную карту целого, ему пришлось произвести множество дотошно скоординированных наблюдений.

Все эти трудности с телескопом показывают, что гений Галилея – не столько в совершенствовании прибора, сколько в способе его применения. К примеру, когда он замечал нечто, смахивающее, скажем, на лунную гору, он не просто доверялся тому, как это выглядит, – он изучал свет и тени и применял теорему Пифагора для оценки высоты горы. Увидев луны Юпитера, он поначалу решил, что это звезды. И лишь после многократных пристальных наблюдений и расчетов, связанных с известным движением Юпитера, он понял: положение этих «звезд» относительно Юпитера меняется так, что можно сделать вывод об их вращении вокруг Юпитера.

Сделав эти открытия, Галилей, не желая залезать на теологическое поле, признания все же пожелал. И начал посвящать немало сил изданию своих наблюдений – и пустился во все тяжкие во имя замены принятой космологии Аристотеля на гелиоцентрическую систему Коперника. Для этого он опубликовал в марте 1610 года «Звездный вестник» – брошюру, описывающую виденные им чудеса. Книга мгновенно стала бестселлером, и, хотя была всего около шестидесяти страниц (в современном формате), потрясла мир ученых: она описывала чудесные, прежде неведомые черты Луны и других планет. Вскоре слава Галилея распространилась по всей Европе, и все захотели посмотреть в телескоп.

В сентябре того же года Галилей переехал во Флоренцию – занять престижное место «главного математика Университета Пизы и философа великого герцога». Плату за работу ему сохранили прежней, но преподавать – или даже проживать в Пизе – от него не требовалось. Властитель, о котором идет речь, – Козимо II Медичи, великий герцог Тосканы, а назначение Галилея случилось не только благодаря его великим достижениям, но и благоволением династии Медичи. Он даже назвал свежеоткрытые луны Юпитера «планетами Медичи».

Вскоре после назначения Галилей сильно заболел и многие месяцы был прикован к постели. Как ни смешно, возможно, с ним приключилась «французская хворь» – сифилис, результат пристрастия к венецианским проституткам. Но, даже болея, Галилей продолжил пытаться убедить влиятельных мыслителей в состоятельности своих открытий. И к следующему году, когда он выздоровел, звезда его взошла так высоко, что его пригласили в Рим читать лекции по его изысканиям.

В Риме Галилей познакомился с кардиналом Маффео Барберини и был удостоен встречи с Папой Павлом V в Ватикане. Поездка оказалась во всех отношениях победной, Галилей вроде бы утряс все противоречия с официальным церковным мировоззрением, и никаких обид не возникло – возможно, потому, что лекции его в основном были посвящены наблюдениям, которые он произвел в телескоп, без подробностей дальнейших выводов.

Впрочем, Галилей в своих последующих политических маневрах со временем неизбежно вошел в конфликт с Ватиканом, поскольку Церковь официально признавала вариант аристотелизма, предложенный Святым Фомой Аквинским и несовместимый с наблюдениями и толкованиями Галилея; вдобавок, в отличие от своего политического предшественника Коперника, Галилей был неисправимо высокомерен, даже в разговорах с теологами о догматах Церкви. И потому в 1616 году Галилея вновь призвали в Рим – на сей раз оправдываться перед собранием высокопоставленных лиц Церкви.

Эта встреча вроде бы закончилось вничью[174]: Галилея не осудили, книг его не запретили, и ему даже позволили еще одну аудиенцию с Папой Павлом; но ему возбранили читать лекции о том, что центр Вселенной – Солнце, а не Земля, и что Земля вращается вокруг Солнца, а не наоборот. В конце концов этот запрет доставил ему грандиозные неприятности, поскольку обвинение Галилея Инквизицией, которое произошло через семнадцать лет, упирало именно на то, что Церковные шишки недвусмысленно запретили Галилею учить людей коперниканству.

Но на некоторое время напряжение спало, особенно после того, как друг Галилея кардинал Барберини сделался в 1623 году Папой Урбаном VIII. В отличие от Папы Павла, Урбан в целом положительно относился к науке и в ранние годы своего папства с готовностью встречался с Галилеем.

В этой более дружелюбной среде, при Урбане, Галилей взялся за работу над новой книгой, которую закончил в свои шестьдесят восемь, в 1632 году. Плод его трудов назывался «Dialogo Sopra I due Massimi Sistemi del Mondo» («Диалог о двух главнейших системах мира»[175]). Но «диалог» вышел изрядно односторонним, и Церковь отреагировала – ожидаемо – так, будто книга называлась «Почему Церковное мировоззрение ошибочно, а Папа Урбан – болван».

«Диалог» Галилей составил в форме дружеского разговора между Симпличио, приверженного последователя Аристотеля, Сагредо, умной нейтральной стороны, и Сальвиати, предлагавшего убедительные аргументы в пользу взглядов Коперника. Галилей писал эту книгу беззаботно, поскольку рассказал о ней Урбану, и тот ее вроде бы одобрил. Но Галилей уверил Папу, что цель этой книги – защитить Церковь и итальянскую науку от нападок, дескать Ватикан запретил гелиоцентризм из-за своего невежества, и одобрение Урбана основывалось на договоренности, что Галилей представит интеллектуальные доводы обеих сторон без предубеждения. Если Галилей и пытался этого добиться, получилось у него из рук вон плохо. По словам его биографа Дж. Л. Хейлброна, «Диалог» Галилея «пренебрег философами, приверженными взглядам о неподвижной Земле, как недолюдьми, нелепыми, зашоренными, тупоумными идиотами и воспел коперниканцев как причастных к высшему разуму»[176].

Книга нанесла еще одно оскорбление. Урбан желал, чтобы Галилей включил в книгу пояснение – текст, подтверждающий состоятельность мировоззрения Церкви, но вместо того, чтобы написать этот текст от своего имени, как просил Урбан, Галилей вложил его в уста своего персонажа Симпличио, которого Хейлброн именует «дурындой». Папа Урбан, совсем не дурында, страшно обиделся.

Когда звездная пыль улеглась, Галилея обвинили в нарушении указа Церкви от 1616 года о запрете распространения учения Коперника и потребовали отречения от его взглядов. Преступление Галилея – в той же мере нарушение границ власти и контроля, или же «владения» истиной, как и в мировоззренческих особенностях[177]. Большая часть интеллектуальной верхушки Церкви понимала, что взгляды Коперника, возможно, верны, однако восставали они против ренегата, распространявшего эти взгляды и ставившего под сомнение учение Церкви[178].

22 июня 1633 года облаченный в белую рубаху узника Галилей склонил колени перед обвинявшим его трибуналом и сдался требованию подтвердить верховенство Писания: «Я, Галилей, сын покойного Винченцо Галилея, флорентинец, семидесяти лет отроду… клянусь, что всегда веровал, верую и с Божьей помощью буду веровать и далее во все, что принимает и проповедует и чему учит Святая Католическая и Апостольская Римская Церковь».

Вопреки заявлению, что он всегда принимал учение Церкви, Галилей, тем не менее, продолжил признанием, что поддерживал осуждаемую теорию Коперника, даже «после того, как было сделано официальное внушение» Церковью, чтобы он, по словам Церкви, «оставил ложное мнение, что Солнце есть центр мира и неподвижно, и что Земля – не центр мира и движется…»

Интереснее всего формулировка Галилеева признания: «Я написал и издал книгу, – сказал он, – в которой описываю новое, но уже осужденное учение, и привожу в его пользу доводы великой убедительности». Даже объявляя о своей приверженности Церковной версии истины, он по-прежнему защищает содержание своей книги.

Галилей завершает покаяние, говоря «желая устранить из умов вашего Святейшества и всех честных христиан сильное подозрение, справедливо против меня бытующее, с искренним сердцем и неподдельной верой я отрекаюсь, проклинаю и презираю вышеупомянутые ошибки и ереси. и клянусь в будущем никогда не говорить и не утверждать, устно или на письме, ничего, что может дать повод для подобных же подозрений касательно меня»[179].

Галилей не подвергся столь же зверскому наказанию, на какое обрекла Инквизиция Джордано Бруно, который тоже утвержд







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.