Здавалка
Главная | Обратная связь

Радиоактивность часто сопровождается g-излучением, возникающим в результате переходов между различными квантовыми состояниями одного и того же ядра.



Существует четыре природных радиоактивных ряда (семейств): , , , . Радиоактивный ряд приведен на рис. 9.6.

Внешние условия (давление, температура, химические реакции и пр.) на ход радиоактивных превращений не оказывают никакого влияния, так как все процессы совершаются внутри ядер.

Закон радиоактивного распада. По своей природе радиоактивность не отличается от распада составных ядер и представляет собой частный случай ядерных реакций. Состав радиоактивных ядер постоянно расширяется. К радиоактивным относятся все ядра с временем жизни от 10-9 с до 1022 с. Как всякий квантовый процесс, радиоактивность – явление статистическое и характеризуется вероятностью протекания в единицу времени, т.е. постоянной распада l.

Если взять большое число N радиоактивных ядер, то за единицу времени из них распадается в среднем lN ядер. Это произведение характеризует интенсивность излучения радиоактивного вещества, содержащего N радиоактивных ядер, и называют активностью, т.е. , где – начальная активность. В СИ единицей активности является распад в секунду (расп/с). Используется также внесистемные единицы: кюри (Ки) – 1 Ки = 3,7×1010 расп/с и резерфорд (Рд) – 1 Рд = 106 расп/с.

Пусть в момент времени t число радиоактивных ядер N. По определению активности и с учетом убыли ядер при распаде, имеем

. (3)
Решением этого дифференциального уравнения является функция вида

, (4)
где – число радиоактивных ядер в момент времени t=0 (рис. 9.6). Формулу (4) называют законом радиоактивного распада.

Найдем период полураспада и среднее время жизни t радиоактивного ядра. Величину определяют как время, за которое число радиоактивных ядер уменьшается вдвое, т.е.

.
Следовательно,

. (5)
Согласно (4) и (5) количество ядер, распавшихся за промежуток времени от t до t+dt, равно


или .
Поэтому время жизни ядра

.
После интегрирования

. (6)
Используя (5) и (6), имеем

. (7)

Статистический закон радиоактивного распада при наличии большого числа радиоактивных атомов практически абсолютно точный закон. На его принципе работают “атомные часы”, служащие, например, в геологии и археологии, для измерения возраста горных пород и предметов деятельности древнего человека.

“Атомными часами”, например, для определения возраста Земли могут служить долгоживущие ядра (период полураспада 4,56×109 лет) и (период полураспада 14×109 лет). В настоящее время такой метод дает для возраста Земли ~4,5×109 лет.

a-распад. Испускание радиоактивным ядром a-частицы (ядро изотопа гелия ) называют a-распадом. Масса a-частицы ma=6,644×10-27 кг. Содержит два протона и два нейтрона. Спин и магнитный момент a-частицы равны нулю. Энергия связи Eсв=28,11 МэВ. Опытным путем установлено, что a-частицы испускаются только тяжелыми ядрами с Z ³ 82.

При a-распаде массовое число А радиоактивного ядра уменьшается на четыре единицы, а заряд Z – на две (правило Содди и Фаянса).

, (8)
где – исходное (материнское) радиоактивное ядро; – новое (дочернее) радиоактивное ядро. Энергия, выделяющаяся при a-распаде

, (9)
где и – массы материнского и дочернего ядер, – масса a-частицы.

Энергетическое условие возможности a-распада заключается в том, чтобы энергия связи (–Q) a-частицы относительно материнского ядра была отрицательна. Время жизни a-радиоактивных ядер лежит в пределах от 3×10-7 с (например, ) до 1017 лет (например, ). Кинетическая энергия вылетевших из ядра a-частиц изменяется от 1,83 МэВ до 11,65 Мэв. Пробег a-частиц с типичной кинетической энергией Ek=6 МэВ составляет в воздухе 5 см, а в алюминии – 0,05 мм.

Спектр излучения a-частиц – линейчатый, представляет собой моноэнергети­ческие линии, соответствующие переходам на различные энергетические уровни дочернего ядра. Вероятность a-распада и ее зависимость от энергии a-частицы и заряда ядра, определяется кулоновским барьером.

Теория a-распада предложена Гамовым (1927 г), в которой рассматривается движение a-частицы в потенциальном ящике с барьером (рис. 9.7, пунктирная линия). Так как, энергия a-частиц составляет 4,76-10 МэВ, а высота кулоновского барьера 25-30 МэВ, то вылет a-частиц из ядра может происходить только за счет туннельного эффекта. Вероятность этого процесса определяется проницаемостью барьера. Если потенциальная энергия барьера больше полной энергии E вылета a-частицы (Ep > E), то говорят о подбарьерном прохождении. Если потенциальная энергия барьера меньше полной энергии вылета a-частицы (Ep < E), то говорят о надбарьерном прохождении. Следовательно, a-распад – подбарьерное прохождении a-частицы. Внутри барьера деление полной энергии на кинетическую и потенциальную лишено смысла. Далеко за пределами ядра движение a-частицы классическое, а вся ее энергия – кинетическая.

Если a-частиц вылетает из ядра, имея орбитальный момент импульса ( ), то перейдя в систему отсчета, вращающуюся вместе с частицей, необходимо добавить к кулоновской потенциальной энергии Eкул, центробежную потенциальную энергию

,
где (L – орбитальный момент импульса). Центробежный барьер создается центробежной силой, а она стремится удалить a-частицу от ядра, т.е. эта сила должна способствовать a-распаду, что было бы верно, если бы происходил надбарьерный процесс. Однако a-распад является подбарьерным процессом. Поэтому центробежная сила повышает потенциальный барьер и увеличивает его ширину, она уменьшает постоянную распада и увеличивает период полураспада.

Современный подход к описанию a-распада опирается на методы, используемые в квантовой теории ядерных реакций. Анализ экспериментальных данных показывает, что a-частицы не существуют в ядре все время, а с некоторой вероятностью образуются на его поверхности перед вылетом.

Корпускулярные свойства a-частиц проявляются вне ядра. Внутри ядра они проявляют волновые свойства, совершая колебания с n=4×1020 с-1 (l=10-14 м, v»106 м/с). Внутри ядра, наталкиваясь на стенки потенциального барьера волны a-частиц испытывают “полное внутреннее отражение”, но иногда проникают сквозь барьер. Чем больше энергия a-частицы в ядре, тем больше вероятность, что она покинет ядро.

Период полураспада ядер определяется в основном энергией a-частиц. Чем больше эта энергия, тем меньше ширина потенциального барьера, который ей необходимо преодолеть, тем больше вероятность просочиться сквозь него и тем меньше период полураспада. Например, для , E=4,2 МэВ, =4,5×109 лет; для полония , E=6 МэВ, =3 мин.

Время и место распада радиоактивных ядер являются случайными. Ядро – микрообъект, подчиняющийся законам квантовой механики, в которой действуют вероятностные законы. Момент распада предсказать невозможно.

К-захват. Электронный b--распад. Позитронный b+- распад.

Бета-минус-распад – самопроизвольный процесс, в котором нестабильное ядро превращается в ядро-изобар . Например, при b--распаде нейтрон превращается в протон, с испусканием антинейтрино (электронное)

.
Другим примером электронного b--распада является распад трития

.

Бета-плюс-распад – самопроизвольный процесс, в котором нестабильное ядро превращается в ядро-изобар и сопровождается, например, превращением протона в нейтрон, с испусканием позитрона и нейтрино (электронное)

.
Другим примером b+-распада является распад радиоактивного ядра

.

b-распад не внутриядерный, а внутринуклонный процесс. Спектр излучения –сплошной. b-распад совершается за счет слабого взаимодействия. Энергия, выделяющаяся в процессе b-распада, лежит в пределах от 0,019 МэВ до 16,6 МэВ. Период полураспада ядер при b-распаде меняется от 10-2 с до 4×1012 лет.

Прямым доказательством не сохранения четности у ядер при b-распаде является то, что электрон вылетает из ядер преимущественно в направлении, противоположном направлению спина ядра (рис. 9.8).

Это связано с отсутствием зеркальной симметрии нейтрино – спин и импульс антинейтрино параллельны друг другу. Средняя длина свободного пробега нейтрино с энергией 1 МэВ в воде »1023 м, что намного превышает размеры звезд (»1015 м). Нейтрино и антинейтрино не участвуют в сильных и электромагнитных взаимодействиях. Нейтрино не имеет электрического заряда и массы. Однако предполагается, что нейтрино имеет массу эВ. Если масса нейтрино отлична от нуля, то его роль во Вселенной окажется более значительной. Существует проблема скрытой массы галактик (корона галактик), существование которой связывают с нейтрино. Масса короны превосходит массу видимого вещества галактик.

К-захват (электронный захват) – явление, в котором ядро поглощает один из электронов электронной оболочки атома. Обычно электрон захватывается из К-слоя, L-слоя и т.д. Электронный захват всегда сопровождается характеристическим рентгеновским излучением. Примером К-захвата может служить распад

.

g-излучение. Гамма-лучами называют электромагнитное излучение, возникающее при переходе атомных ядер из возбужденного состояния в более низкие энергетические состояния. В этом процессе число протонов и нейтронов в ядре не изменяется. Спектр g-излучения дискретный, что связано с квантование энергетических уровней в ядре. Энергия g-квантов, испускаемых атомными ядрами, изменяется от 10 кэВ до 5 МэВ. Длина волны g-квантов 10-11 ³ l ³ 10-13 м.

Процесс излучения g-кванта нуклоном в ядре сопровождается обменом импульсом последнего не только с рассматриваемым нуклоном, но и с остальными нуклонами ядра. Следовательно, испускание g-квантов процесс внутриядерный, а не внутринуклонный.

Возможны и каскадные испускания возбужденным ядром нескольких g-квантов. Возбужденные ядра, способные к g излучению, могут возникать также в результате предшествующих a- и b-распадов. Однако возбужденное ядро может перейти в основное состояние не только путем испускания g-квантов, но и путем непосредственной передачи энергии возбуждения одному из электронов атомных оболочек. Такой процесс называют внутренней конверсией. Электроны внутренней конверсии моноэнергетичны, что и позволяет отличить их от электронов, испускаемых при b--распаде ядер, спектр излучения которых непрерывен. Внутренняя конверсия сопровождается рентгеновским излучением, которое возникает в результате переходов электрона с вышележащих атомных слоев и оболочек на место, освобожденное электроном внутренней конверсии. Вероятность испускания возбужденным ядром g - кванта в сильной степени зависит от направления спинов начального и конечного состояний ядра.

Рассмотрим дифракцию Фраунгофера от одной щели. Пусть на бесконечно длинную щель падает плоская световая волна (рис.1,а). Поместим за щелью собирательную линзу, а в фокальной плоскости линзы - экран. Волновая поверхность падающей волны, плоскость щели и экран параллельны друг другу.

Разобьем открытую часть волновой поверхности на параллельные краям щели элементарные зоны Френеля, имеющие вид полос, параллельных ребру щели. Ширина dx каждой зоны выбирается таким образом, чтобы разность хода от краев зон была равна λ/2. Согласно принципу Гюйгенса-Френеля, вторичные волны, посылаемые зонами в направлении, определяемом углом φ, соберутся в точке экрана В. Возмущение, вызванное каждой зоной Френеля в плоскости щели, описывается уравнением

, (1)

где С - постоянная величина.

Амплитуда колебания, возбуждаемого зоной Френеля в любой точке экрана, будет зависеть только от 'площади зоны. Площадь пропорциональна ширине зоны dx. Следовательно, амплитуда колебания dE, возбуждаемого зоной ширины dx в любой точке экрана, имеет вид

. (2)

 

Рис.1. Дифракция Фраунгофера на одной щели: а) получение дифракционной картины от одной щели; б) распределение интенсивности

световых волн на экране

Тогда результирующая амплитуда Ао будет определяться как алгебраическая сумма амплитуд колебаний, возбуждаемых в некоторой точке экрана всеми зонами Френеля. Ее можно найти, проинтегрировав dA по всей ширине щели b:

 

Отсюда и, следовательно,

(3)

 

Оптическая разность хода Δ между крайними лучами МС и ND, идущими от щели в произвольном направлении φ,

 

, (4)

 

где F - основание перпендикуляра, опущенного из точки М на луч ND, x — ширина элементарной зоны Френеля

Если фазу колебания, возбуждаемого элементарной зоной, примыкающей к левому краю щели (х = 0), положить равной , то фаза колебания, возбуждаемого зоной с координатой х, будет равна

 

 

где λ - длина волны в данной среде.

Таким образом, колебание, возбуждаемое элементарной зоной с координатой х в точке В, положение которой на экране определяется углом φ, может быть представлена в вид

 

. (5)

 

Вследствие когерентности возмущений от всех зон Френеля нахождение результирующей амплитуды в произвольной точке В сводится к решению задачи интерференции, т.е. сложению влияний всех зон Френеля с учетом амплитуды и фазы. Поэтому проинтегрируем выражение (5) по всей ширине щели, т.е. от нуля до b:

 

Модуль выражения, стоящего в квадратных скобках, дает амплитуду Аφ результирующего колебания в точке D, положение которой определяется

углом φ:

(6)

При значения φ, удовлетворяющих условию: , т.е. в случае, если

(к = 1,2,3,....), (7)

 

амплитуда Аφ обращается в нуль. Таким образом, условие (7) определяет положение минимумов интенсивности.

Если для точки В разность хода Δ равна число зон Френеля

будет нечетным, действие одной из них окажется не компенсированным и наблюдается максимум интенсивности, т.е.

 

(8)

 

Уравнение (8) называется условием дифракционного максимума от одной щели. В направлении φ = 0 щель действует как одна зона Френеля, и в этом направлении свет распространяется с наибольшей интенсивностью, т.е. в точке Во наблюдается центральный дифракционный максимум.

Интенсивность света пропорциональна квадрату амплитуды. Следовательно, в соответствии с уравнением (6)

 

(9)

 

где I0 - интенсивность в середине дифракционной картины (против центра линзы) Iφ - интенсивность в точке, положение которой определяется данным значением ф. Из формулы (9) получается, что . Это означает, что

дифракционная картина симметрична относительно центра линзы. При смещении щели параллельно экрану (вдоль оси х) дифракционная картина, наблюдаемая на экране, остается неподвижной (ее середина лежит против центра линзы). Распределение интенсивности на экране, получаемое вследствие дифракции (дифракционный спектр), приведено на рис. 1,6. Сужение щели приводит к тому, что центральный максимум расплывается, а интенсивность уменьшается, и, наоборот, чем щель шире ( ), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При вцентре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.

Центральный максимум будет расположен в точке Во против центра щели. По обе стороны от него интенсивность будет спадать до первого минимума, а затем подымятся до следующего максимума и т.д., как это показано на рисунке 1,6. На экране Э будут наблюдаться перемежающиеся светлые и темные полосы с постепенными переходами между ними. Центральная полоса будет наиболее яркой, а освещенность боковых максимумов будет убывать от центра к периферии.

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.