Здавалка
Главная | Обратная связь

Тунелювання електронів через потенційний бар'єр



Лабораторна робота № 1

«Дослідження поверхні матеріалів методом

Скануючої тунельної мікроскопії»

Мета роботи:вивчення теоретичних основ роботий одержання навичок роботи на учбово-дослідницькому скануючому зондовому мікроскопі.

Завдання роботи:

1. вивчити основи скануючої зондової мікроскопії;

2. ознайомитися із принципом роботи і будовою учбово-дослідницького скануючого зондового мікроскопу;

3. навчитися робити зондовий датчик методом електрохімічного травлення;

4. провести обробку зображень, отриманих у результаті сканування зразків на СЗМ;

5. ознайомитися з електронними схемами системи керування СЗМ;

6. оформити звіт про лабораторну роботу.

Вступ

 

Скануюча зондова мікроскопія (СЗМ) - один з найбільш сучасних методів дослідження мікротопографії й локальних властивостей поверхні твердого тіла з високим просторовим розрізненням. У цей час практично жодне дослідження в області фізики поверхні та тонкоплівкових технологій не обходиться без застосування методів СЗМ. У результаті значного прогресу в розробці та вдосконаленні чутливих елементів скануючих мікроскопів постійно з'являються принципово нові датчики й прилади. Так, в останні роки були створені іонний скануючий мікроскоп, скануючий мікроскоп на поверхневих плазмонах, фотонний скануючий тунельний мікроскоп та ін. Розвиток СЗМ послужив також основою для розвитку нових методів у нанотехнологіі - технології створення структур з нанометровими розмірами.

Скануючий тунельний мікроскоп (СТМ) - перший із сімейства зондових мікроскопів - був винайдений у 1981 році швейцарськими вченими Гердом Біннігом та Генріхом Рорером. У своїх роботах вони показали, що це досить простий і досить ефективний спосіб дослідження поверхні із просторовим розрізненням аж до атомарного. Справжнє визнання ця методика одержала після візуалізації атомарної структури поверхні ряду матеріалів і, зокрема, реконструйованій поверхні кремнію. В 1986 році за створення тунельного мікроскопу Г.Біннігу та Г.Рореру була присуджена Нобелівська премія з фізики. Слідом за тунельним мікроскопом протягом короткого часу були створені атомно-силовий мікроскоп (АСМ), магнітно-силовий мікроскоп (МСМ), електросиловий мікроскоп (ЕСМ), ближньопольовий оптичний мікроскоп (БОМ) і багато інших приладів, що мають подібні принципи роботи та мають назву скануючи зондові мікроскопи. У наш час зондова мікроскопія - це галузь техніки, що бурхливо розвивається, та прикладних наукових досліджень.

 

Теоретична частина

 

Тунелювання електронів через потенційний бар'єр

 

Принцип роботи СТМ заснований на явищі тунелювання електронів через вузький потенційний бар'єр у вигляді непровідного вакуумного зазору між металевим зондом і провідним зразком у зовнішнім електричному полі.

Рисунок 1.1 – Схема тунелювання електронів через потенційний бар'єр у тунельному мікроскопі

При підведенні зонда до поверхні зразка на відстані в трохи ангстрем утвориться тунельно-прозорий потенційний бар'єр, величина якого визначається, в основному, значеннями роботи виходу електронів з матеріалу зонда і зразка . При якісному розгляді бар'єр можна вважати прямокутним з ефективною висотою, рівній середній роботі виходу матеріалів:

 

(1)

 

Як відомо з курсу квантової механіки, імовірність тунелювання частинки через потенційний бар'єр дорівнює

 

, (2)

 

де - амплітуда хвильової функції частки, що пройшла через потенційний бар'єр, - початкова амплітуда; - постійна загасання в області відповідному потенційному бар'єру; - ширина потенційного бар'єра. Відомо, що для тунельного контакту між двома металами, розділеного потенційним бар'єром шириною , постійна загасання має вигляд:

 

, (3)

де - постійна Планка, - маса електрона.

На рис.1.2 типові енергетичні діаграми, пов'язані із процесом тунелювання через потенційний бар'єр. Діелектричний шар між двома металами зображений у вигляді потенційного бар'єра прямокутної форми висотою . Положення рівня Фермі в незбуреному випадку (без зовнішнього поля) позначається як .

Рисунок 1.2 – Прямокутний потенційний бар'єр у проміжку між металевими електродами: а) V= 0, б) e < φ*

 

Коли немає зовнішнього поля, електрони в контактах займають стани аж до енергії Фермі. Природно, що при кінцевій температурі рівень Фермі не має різкої границі. У цьому випадку електрони не можуть переходити з одного контакту, оскільки немає вільних місць, які він міг би зайняти. Нагадаємо, що із принципу Паулі треба, що в одному стані може перебувати тільки один електрон. Якщо контакт помістити в зовнішнє поле, рис. 2б, то енергетичні рівні зрушуються на однакову величину рівну . У результаті, у правому контакті з'являються вільні місця, які можуть зайняти, у результаті тунелювання через бар'єр, електрони з лівого контакту. Таким чином, струм переносять електрони з енергетичного шару шириною . Величина струму прямо пропорційна різниці числа електронів у левом і правом контакті, помноженої на ймовірність переходу в одиницю часу (2).

 

(4)

 

 

У виразі (4) величина J (V) вважається незалежною від зміни відстані зонд-зразок. Для типових значень роботи виходу (φ ~ 4 еВ) значення константи загасання k = 2 , так що при зміні ∆Z на ~ 1 Å величина струму змінюється на порядок.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.