Здавалка
Главная | Обратная связь

Поперечная чувствительность



Поперечная чувствительность характеризует способность датчика преобразовывать в электрический сигнал ускорение, направленное под углом 90° к оси чувствительности датчика (поперечное). У идеального акселерометра поперечная чувствительность равна нулю. В паспортных данных датчика указывается часть (в процентах) поперечного ускорения, которая проходит на выход.

Шум акселерометров

Шум, содержащийся в выходном сигнале акселерометра, определяет разрешающую способность устройства, важную при определении малых ускорений. Предельное разрешение в основном определяется уровнем шума измерения, который включает внешний фоновый шум и шум собственно датчика. Уровень шума непосредственно связан с шириной полосы пропускания датчика. Уменьшение полосы пропускания путем включения ФНЧ на выходе датчика приводит к снижению уровня шума. Это улучшает отношение сигнал/шум и увеличивает разрешающую способность, однако вносит амплитудные и фазовые частотные искажения. Некоторые модели акселерометров содержат на кристалле ФНЧ (семейство XMMA — 4-го порядка, ADXL190 — 2-го). Двухосные датчики ADXL202/210 имеют выводы для подключения двух внешних конденсаторов, образующих с двумя внутренними резисторами по 32 кОм два ФНЧ первого порядка.

 

Гироскопы

ГИРОСКОП,навигационный прибор, основным элементом которого является быстро вращающийся ротор, закрепленный так, что ось его вращения может поворачиваться. Три степени свободы (оси возможного вращения) ротора гироскопа обеспечиваются двумя рамками карданова подвеса. Если на такое устройство не действуют внешние возмущения, то ось собственного вращения ротора сохраняет постоянное направление в пространстве. Если же на него действует момент внешней силы, стремящийся повернуть ось собственного вращения, то она начинает вращаться не вокруг направления момента, а вокруг оси, перпендикулярной ему (прецессия).

Рис.10

История

До изобретения гироскопа человечество использовало различные методы определения направления в пространстве. Издревле люди ориентировались визуально по удалённым предметам, в частности, по Солнцу. Уже в древности появились первые приборы: отвес и уровень, основанные на гравитации. В средние века в Китае был изобретён компас, использующий магнетизм Земли. В Европе были созданы астролябия и другие приборы, основанные на положении звёзд.

Рис.11

Гироскоп изобрёл Иоганн Боненбергер и опубликовал описание своего изобретения в 1817 году. Однако французский математик Пуассон ещё в 1813 году упоминает Боненбергера как изобретателя этого устройства. Главной частью гироскопа Боненбергера был вращающийся массивный шар в кардановом подвесе. В 1832 году американец Уолтер Р. Джонсон придумал гироскоп с вращающимся диском. Французский учёный Лаплас рекомендовал это устройство в учебных целях. В 1852 году французский учёный Фуко усовершенствовал гироскоп и впервые использовал его как прибор, показывающий изменение направления (в данном случае — Земли), через год после изобретения маятника Фуко, тоже основанного на сохранении вращательного момента. Именно Фуко придумал название «гироскоп». Фуко, как и Боненбергер, использовал карданов подвес. Не позднее 1853 года Фессель изобрёл другой вариант подвески гироскопа.

Преимуществом гироскопа перед более древними приборами является то, что он правильно работает в сложных условиях (плохая видимость, тряска, электромагнитные помехи). Однако гироскоп быстро останавливался из-за трения.

Во второй половине XIX века было предложено использовать электродвигатель для разгона и поддержания движения гироскопа. Впервые на практике гироскоп был применён в 1880-х годах инженером Обри для стабилизации курса торпеды. В XX веке гироскопы стали использоваться в самолётах, ракетах и подводных лодках вместо компаса или совместно с ним.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.