Здавалка
Главная | Обратная связь

Особенности поведения



Внутривидовая коммуникация

Звуки

Процесс издавания звука певчим кузнечиком

«Песня» цикады

Многие насекомые способны производить звуки, которые служат коммуникационными сигналами. При помощи звуков обеспечивается встреча самцов и самок, поддерживаются внутрипопуляционные и внутрисемейные отношения, достигается репродуктивная изоляция у близкородственных видов. При контактах с другими видами звуковые сигналы выполняют более узкую функцию, как то: отпугивание или угрозы. Простейшим способом генерации звуков насекомыми являются удары частями тела по субстрату. Термиты и личинки общественных ос пользуются для этой цели мандибулами, а муравьи — также и брюшком. Представители некоторых семейств жуков издают звуки, ударяя головой или концом брюшка по субстрату (последний способ характерен для чернотелок). «Часы смерти» — именно так у многих народов называются «тикающие» звуки, издаваемые мебельными и домовыми точильщиками, которые селятся в изделиях из древесины. Эти виды точильщиков издают данные звуки, похожие на звук тиканья часов, с целью привлечения самок, ритмично ударяя головой о стенки своих ходов в древесине. Звуковые сигналы цикад создаются колебаниями особых тимбальных мембран, располагающихся по бокам первого брюшного сегмента в виде двух выпуклых пластин, под которыми находятся воздушные мешки — резонаторы звука. Самым распространённым способом генерации звуков является использование т. н. стридуляционных аппаратов. При работе данного аппарата специальный «скребок» трётся о «пилку» ребристой поверхности покровов насекомого на каком-либо участке тела, в результате чего возникают звуковые сигналы. Особенно широкое распространение данный тип генерации звуков получил в отряде прямокрылых. У кузнечиков, сверчков и медведок звук генерируется путём трения надкрылий друг о друга, и данная способность, как правило, имеется только у самцов. Саранчовые для генерации звуков используют ряд зубчиков на бедре последней пары ног, которым они трут о заострённый гребень на одной из жилок переднего крыла. Способностью издавать звуки обладают и самцы, и самки саранчовых. Длительность, часто и ритм звуковых сигналов являются индивидуальными у разных видов насекомых. Частота звуков, издаваемых цикадами, саранчовыми, сверчками и медведками, находится в диапазоне от 1,6 до 8,5 кГц, а у большинства кузнечиков — в области высокочастотных звуков и ультразвука вплоть до 30 кГц.

Контактные сигналы

Пчёлы-разведчицы могут сообщать членам своей семьи с помощью особого танца путь к найденному источнику корма. Танцуют пчелы в темноте, внутри улья. Расшифровкой языка танцев пчёл занимался Карл фон Фриш, получивший в 1973 году за свои работы в этой области Нобелевскую премию. Важную роль играют контактные сигналы (касание антеннами) во время трофаллаксиса и других форм поведения у муравьев .

Свечение

Самка обыкновенного светляка

Таракан Lucihormetica luckae

Биолюминесцентное свечение характерно для некоторых групп насекомых. Больше всего видов с такой способностью представлено среди жесткокрылых. Количество, форма и расположение световых органов у различных видов варьируют. У большинства из них есть только один крупный светящийся орган на вентральной стороне двух последних стернитов брюшка.

В основе свечения находится реакция окисления люциферина при участии специфического фермента люциферазы, а также АТФи ионов магния.

Биолюминесцентное свечение наиболее распространено среди жуков-светляков. У них встречаются сигналы, связанные споловым поведением (поисковые и призывные сигналы у самцов и самок), защитные и территориальные сигналы и даже световаямимикрия (самки рода Photuris испускают световые сигналы готовности к спариванию, характерные для видов рода Photinus, которые обитают на одной с ними территории. Самцы Photinus, привлечённые такими сигналами, «попадают в ловушку» и служат пищей для хищных самок рода Photuris). Самки южноамериканских светляков из рода Phrixcthrix способны излучать свет зелёного и красного цветов, причём делают это поочерёдно либо одновременно. У щелкунов рода огненосных щелкунов (Pyrophorus) есть два небольших световых органа, которые находятся на верхней стороне переднеспинки, крупный светящийся орган находится также на первом стерните брюшка. Под них мимикрирует обитающий в Эквадоре таракан Lucihormetica luckae, который имеет на верхней части груди два пятна, испускающих флуоресцирующий свет (предположительно, бактериального происхождения). Личинки обитающих в пещерах и гротах Австралии и Новой Зеландии комаров Arachnocampa плетут гнездо из шёлка на потолке пещер и свешивают вниз нити с капельками липкой жидкости, а затем подсвечивают их собственным телом, привлекая мелких насекомых.

Феромоны

Феромоны используются насекомыми для самых разнообразных целей. Они вызывают ответную реакцию у особей того же вида. В одних группах насекомых половые феромоны выделяются самками, в других — самцами. Выделяют две функциональные группы феромонов: релизеры и праймеры. Феромоны-релизеры вызывают немедленную поведенческую реакцию. Они широко распространены у насекомых, опосредуют половое поведение, образование скоплений, распределение особей в пространстве при высокой плотности популяции одного вида. Самыми важными являются половые феромоны, облегчающие встречу самцов и самок. Феромоны-праймеры вызывают медленные реакции и, способствуя физиологическим изменениям, либо тормозят, либо возбуждают поведенческие реакции. Например, самцы перелётной саранчи выделяют химическое вещество, которое вызывает синхронную линьку огромного числа особей с образованием обширных стай.

Ориентация в пространстве

Ориентирование по направлению лучей солнца\вербовочный танец медоносных пчёл

Важнейшим средством ориентации многих насекомых служат зрительные, звуковые стимулы и запахи. Медоносные пчёлы используют ориентацию по Солнцу для указания другим особям своего улья направления к источнику нектара (круговой и виляющий танцы пчёл). Обладая возможностью ориентироваться по плоскости поляризации света, насекомые могут определить положение Солнца и в облачную погоду. Пчёлы и осыориентируются, запоминая расположение своего гнезда относительно окружающих его предметов (деревья, кустарники, камни и пр.). Перед тем как улететь, многие одиночные осы кружатся над гнездом, запоминая основные вехи на пути к нему. В случае пчёл, если передвинуть улей в сторону на расстояние меньше одного метра, то возвращающиеся со взятком пчёлы ищут его на прежнем месте и не сразу находят его на новом.

Муравьи-фуражиры могут находить дорогу к гнезду как в лесных условиях, используя свои тропинки со следами из феромонов (на расстояние до 200 метров), так и в пустынях. Чтобы не умереть от дневной жары, пустынные муравьи-бегунки вынуждены находить кратчайший обратный путь до гнезда. Cataglyphis fortis использует визуальные ориентиры в сочетании с другими сигналами для навигации. Красные фаэтончики при отсутствии визуальных ориентиров могут отслеживать направление и отсчитывать расстояние внутренним шагомером, подсчитывая, сколько шагов они делают в каждом направлении. Интегрируя эту информацию, муравьи находят кратчайший путь до гнезда. Другие виды муравьёв способны использовать для навигации магнитное поле Земли и обнаруживать поляризованный свет Солнца, используемый для определения направления.

Фототропизм

У большинства насекомых хорошо развита реакция на свет, при этом они могут как стремиться к источнику света, так и бежать от него. На различных стадиях своего жизненного цикла насекомые могут по-разному реагировать на свет. Личинки комнатной мухи обладают отрицательным фототаксисом и избегают света, а взрослые мухи характеризуются положительным фототаксисом и летят на свет. Лёт на искусственные источники света отмечается среди представителей почти всех отрядов насекомых. Преимущественно это активные в сумерках и ночью насекомые, но порой к источникам света прилетают виды, ведущие дневной образ жизни. Траектория полёта насекомых поблизости от источников света обычно представляет собой сложную ломаную кривую. Спустя некоторое время после прилёта к источнику света насекомое может покинуть освещённую зону. Лёт насекомых на свет является сложным многоступенчатым явлением. С начала XX века энтомологами предпринимались попытки дать объяснение этому явлению, однако единой теории до сих пор не существует. Современные теории не объясняют факт, что в одной систематической группе на уровне рода одни его представители летят на свет, а другие — нет.

Скопления и миграции

Схема маршрута миграции монарха

Колония клопов-солдатиков

Многие насекомые совершают миграции — как в одиночку, так и объединяясь в стаи. Виды, совершающие регулярные миграции, обычно следуют определённому маршруту. Знаменита своей способностью образовывать крупные стаи (численностью до сотен миллионов особей), мигрирующие на значительные расстояния в поисках пищи, саранча (до 100 км в день). Божьи коровки могут образовывать массовые скопления в местах зимовок. Причины зимних скоплений и предшествующих им миграций, возможно, связаны с историческим становлением данного семейства, ведь скопления характерны именно для стран с холодной зимой, которые заселялись теплолюбивыми видами, изменившими свой тип питания и образ жизни. Некоторые жуки совершают групповые перелёты. Например, плавунцы, водолюбы иногда совершают перелёты довольно большими стаями при переселении в новые водоёмы. Миграционное поведениевстречается у бабочек и известно примерно у 250 видов, причём всего два десятка из них совершают регулярные и продолжительные по расстоянию перелёты. Данаида монарх — самая известная мигрирующая бабочка, ежегодно преодолевающая большие континентальные расстояния в Северной Америке. К миграциям способны и европейские виды: например, репейницы зимуют в Северной Африке, где они размножаются, и новое поколение репейниц мигрирует на север, где выводится летнее поколение бабочек. При миграциях репейницы летят группами со скоростью 25—30 км/ч и могут преодолевать до 500 км в день. Большинство насекомых расселяются во время перелётов, но у ряда видов функцию расселения выполняют личинки. Наиболее известными из них, склонными к миграциям в поисках пищи, являются гусеницы походных шелкопрядов (Thaumetopoeidae). Во время таких миграций эти гусеницы передвигаются цепочкой друг за другом.

Общественные насекомые

Термитники некоторых видовтермитов достигают рекордных для беспозвоночных размеров

Гнездо французских ос

Общественные насекомые (социальные насекомые) составляют около 75 % биомассы всех насекомых планеты. Они отличаются не столько своими крупными скоплениями (тучи перелётной саранчи имеют ещё большую численность, но это не социальный вид), но несколькими особенностями поведения. Для них характерны обитание в совместно построенном гнезде, уход за потомством, перекрывание нескольких поколений и разделение обязанностей (полиэтизм) среди членов их семей. Семьи состоят из нескольких каст: половых (репродуктивных самок и самцов) и бесплодных рабочих особей (рабочие, солдатыи другие). Последние выполняют все функции в семье, кроме размножения. «Кастовый» полиэтизм тесно связан с явлением кастового полиморфизма.

Социальный образ жизни (эусоциальность) обнаружен у всех представителей семейства муравьи (более 12 000 видов) и отрядатермиты (около 3000). Одиночные виды муравьёв и термитов в современной фауне не обнаружены. Общественный образ жизни ведут и некоторые виды пчёл и ос (медоносная пчела, шмели, шершни и другие). Но если у муравьёв все известные науке виды являются полностью социальными, то в других семействах перепончатокрылых (пчёлы и осы) наблюдаются все стадии перехода от одиночного образа жизни к общественному: пресоциальность, субсоциальность, полусоциальность, парасоциальность и квазисоциальность. У ос эусоциальность встречается среди подсемейств веспины (бумажные осы, шершни), полистины, а среди пчёл в таких группах, как настоящие пчёлы (Apidae, включая шмелей, безжальных и медоносных пчёл), галиктиды.

Характерной особенностью общественных насекомых служит строительство крупных и сложноустроенных гнёзд (например, муравейник, термитник). Они характеризуются особой защитной конструкцией, обеспечивающей поддержание постоянных и оптимальных показателей вентиляции, влажности воздуха и т. п., обеспечивающих выращивание расплода, а у видов-грибководов (муравьи-грибководы и термиты) ещё и симбионтных грибов. Размеры крупнейших термитников достигают 9 м в высоту. У пустынных муравьёв гнёзда могут уходить под землю на глубину до 4 м, а по косвенным данным — даже до 10 метров.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.