Медь и медные сплавы
Медь - тягучий вязкий металл светло-розового цвета, легко прокатывается в тонкие листы, хорошо проводит теплоту и электрический ток. Плотность меди равна 8,96. Общее содержание меди в земной коре составляет 0,01 %. ПДК в воде составляет 0,001 мг/л. Стандартный электродный потенциал медного электрода для процесса Cu+ + е → Cu равен +0,52 В, а для процесса Сu2+ + 2е→ Сu составляет +0,337 В. Таким образом, термодинамически более вероятным процессом является образование двухвалентных ионов меди. Обычно при коррозии медь переходит в раствор с образованием Сu2+. Стационарный потенциал меди в растворе 3 % NaCl составляет +0,05 В, а в растворе 1N HCl − +0,15 В. Поэтому медь в обычных условиях не вытесняет водород из растворов, т.е. не может корродировать с водородной деполяризацией [8]. В растворах комплексообразователей (KCN, NH3) или окислителей (HNO3, Н2О2) или даже при продувании через растворы кислорода или воздуха, скорость окисления меди существенно увеличивается (таблица 1.7). Окислительные кислоты, такие как азотная и хромовая, даже разбавленные, вызывают коррозию меди и медных сплавов. Способность к пассивированию у меди выражена слабо. В атмосферных условиях медь устойчива, на ее поверхности создаются защитные слои типа СuСO3 · Сu(OН)2. Более 50 % меди используется в электротехнической промышленности, 30-40% — для изготовления сплавов, а остальная часть — для изготовления теплообменников, холодильников, вакуумных аппаратов.
Таблица 1.7 - Влияние аэрации кислорода на скорость коррозии меди в кислотах
Медь со многими металлами дает твердые растворы. Поэтому структура медных сплавов в основном однородна. Медь сообщает сплавам термодинамическую устойчивость. Для медных сплавов характерны те же основные условия протекания коррозионного процесса, что и для чистой меди: они достаточно устойчивы в солевых растворах и в разбавленных неокислительных кислотах. Медь может применяться в промышленности в производстве формалина в колоннах дистилляции, если формалиновые смеси не содержат муравьиной кислоты и в аппараты не попадает воздух. В кипящей смеси формальдегида, воды и метилового спирта скорость коррозии меди не превышает 0,05 мм/год. Медь имеет температуру плавления 1083 °С и не является жаростойким материалом. Однако в некоторых конструкциях она эксплуатируется при повышенных температурах [9]. Легирование меди другими компонентами может существенно изменить скорость газовой коррозии сплава. Наиболее сильно повышается стойкость меди к газовой коррозии при легировании ее бериллием (до 2,5 %), магнием (до 5 %) и алюминием (до 5%) (рисунок 1.12). Для работы при высоких температурах до 900 °С применяют алюминиевые (до 10% AI) и бериллиевые бронзы.
Рисунок 1.12 - Влияние добавок магния, бериллия и алюминия на скорость окисления меди на воздухе при 800° С. F — отношение скорости окисления сплава к скорости окисления чистой меди Латуни — это сплавы меди с цинком (до 45 % Zn). Специальные латуни дополнительно легируются Si, Al, Ni, Сг, Мn и др. Специальные латуни по коррозионной стойкости не уступают меди. Введение в простую латунь алюминия, марганца или никеля повышает стойкость сплава к атмосферной коррозии, а введение кремния — в морской воде. Механические свойства, химический состав и области применения латуней и бронз даны в таблице 1.8. Латуни широко применяются в качестве материала для труб конденсаторов в паросиловых установках, особенно для корабельных конденсаторов, охлаждаемых быстро протекающей морской водой. Для простых латуней характерен вид коррозии, который называется обесцинкованием. Латунь на отдельных участках поверхности подвергается специфическому разрушению, в результате которого возникает рыхлый слой меди. Вначале в раствор переходят одновременно цинк и медь. Затем ионы меди вторично выделяются из раствора, а образовавшийся осадок меди, выполняя роль добавочного катода, ускоряет электрохимическую коррозию латуни. В результате в раствор переходят ионы цинка, и с течением времени коррозия распространяется так глубоко, что приводит к образованию сквозных повреждений. Если процесса обесцинкования не происходит, то скорость разрушения латуней в морской воде невелика и составляет 0,008-0,01 мм/год. Для уменьшения обесцинкования латуней сплав дополнительно легируют оловом, никелем, алюминием, а чаще всего мышьяком в количестве 0,001-0,012%. Латуни в условиях эксплуатации склонны к коррозионному растрескиванию. Это явление наблюдается при наличии в атмосфере аммиака или сернистого ангидрида, а также в растворах, содержащих аммиак, комплексные аммиачные или цианистые соли. Дополнительное легирование латуней небольшими добавками кремния (0,5 %) повышает их стойкость к коррозионному растрескиванию. Кремнистые латуни, содержащие не более 1 % Si при 20 % Zn, обладают хорошими механическими и технологическими свойствами [9]. Для изготовления теплохимических аппаратов чаще всего применяют латуни марок ЛМц 58-2 с содержанием марганца 1-2% и Л070-1 с содержанием олова 1-1,5 % . Латунь Л070-1 стойка в морской воде, поэтому ее называют «морской латунью» или «адмиралтейским металлом». Бронзами называют сплавы меди с оловом, а также с алюминием, кремнием, марганцем и т.д. Оловянистые бронзы содержат не более 13,8% Sn, чаще — 8- 10% Sn. Они представляют собой твердые растворы. Оловянистые бронзы имеют хорошую коррозионную устойчивость в разбавленных минеральных неокислительных кислотах, в морской воде, и щелочных растворах (исключая аммиачные). Они имеют хорошие антифрикционные свойства и обладают прекрасными литейными качествами. Таблица 1.8 - Химический состав, свойства (в отожженном состоянии) и применение некоторых латуней и бронз, обрабатываемых давлением
Алюминиевые бронзы содержат до 9-10% А1 и имеют однофазную структуру. Эти бронзы стойки в разбавленных растворах кислот, в том числе в соляной, фосфорной, уксусной, лимонной и многих других органических кислотах. Особенно высокой коррозионной стойкостью отличается алюминиевая бронза с содержанием 9,8 % А1 и алюминиевая бронза, содержащая дополнительно 4% железа (Бр.АЖ9-4). Кремнистые бронзы могут содержать до 15 % кремния, но только при содержании кремния до 3-4% сплав имеет структуру твердого раствора. В химической промышленности применяются кремнистые бронзы, дополнительно легированные марганцем (Бр.КМцЗ-1) и никелем (Бр.КН1-3). Они используются для изготовления аппаратуры, работающей под давлением, а также для реакторов взрывоопасных веществ, так как такие бронзы не дают искр при ударе [10]. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|