Здавалка
Главная | Обратная связь

METHODS OF STEEL HEAT TREATMENT



Quenching is a heat treatment when metal at a high temperature is rapidly cooled by immersion in water or oil. Quenching makes steel harder and more brittle, with small grains structure.

Tempering is a heat treatment applied to steel and certain alloys. Hardened steel after quenching from a high temperature is too hard and brittle for many applications and is also brittle.

Tempering, that is re-heating to an intermediate temperature and cooling slowly, re­duces this hardness and brittleness. Tempering tempera­tures depend on the composition of the steel but are fre­quently between 100 and 650 °C. Higher temperatures usually give a softer, tougher product.

The colour of the oxide film produced on the surface of the heated metal often serves as the indicator of its temperature.

Annealing is a heat treatment in which a material at high temperature is cooled slowly. After cooling the metal again becomes malleable and ductile (capable of being bent many times without cracking).

All these methods of steel heat treatment are used to obtain steels with certain mechanical properties for certain needs.

2. Прочитайте текст снова и письменно ответьте на вопросы:

1. What is quenching?

2. What makes steel harder and more brittle?

3. What is tempering?

4. What temperature range is used for tempering?

5. What are the methods of steel heat treatment used for?


ВАРИАНТ 2

1. Прочитайте и письменно переведите на русский язык текст:

STEEL

The most important metal in industry is iron and its alloy – steel. Steel is an alloy of iron and carbon. It is strong but corrodes easily through rusting, although stainless and other special steels resist corrosion. The amount of carbon in steel influences its properties considerably. Steels of low carbon content (mild steels) are quite ductile and are used in the manufacture of sheet iron, wire and pipes. Medium-carbon steels containing from 0.2 to 0.4 per cent carbon are tougher and stronger and are used as structural steels. Both mild and medium-carbon steels are suitable for forging and welding. High-carbon steels contain from 0.4 to 1.5 per cent carbon, are hard and brittle and are used in cutting tools, surgical instruments, razor blades and springs. Tool steel, also called silver steel, contains about 1 per cent carbon and is strengthened and toughened by quenching and tempering. The inclusion of other elements affects the properties of the steel. Manganese gives extra strength and toughness. Steel containing 4 per cent silicon is used for transformer cores or electromagnets because it has large grains acting like small magnets. The addition of chromium gives extra strength and corrosion resistance, so we can get rust-proof steels. Heating in the presence of carbon or nitrogen-rich materials is used to form a hard surface on steel (case-hardening). High-speed steels, which are extremely important in machine-tools, contain chromium and tungsten plus smaller amounts of vanadium, molybdenum and other metals.

 

2. Прочитайте текст снова и письменно ответьте на вопросы:

1. What is steel?

2. What are the main properties of steel?

3. What are the drawbacks of steel?

4. What kinds of steel do you know and where are they used?

5. What gives the addition of manganese, silicon and chromium to steel?


ВАРИАНТ 3

 

1. Прочитайте и письменно переведите на русский язык текст:

METALS

Metals are materials most widely used in industry because of their properties. The study of the production and properties of metals is known as metallurgy. The separation between the atoms in metals is small, so most metals are dense. The atoms are arranged regularly and can slide over each other. That is why metals are malleable (can be deformed and bent without fracture) and ductile (can be drawn into wire). Metals vary greatly in their properties. For example, lead is soft and can be bent by hand, while iron can only be worked by hammering at red heat. The regular arrangement of atoms in metals gives them a crystalline structure. Irregular crystals are called grains. The properties of the metals depend on the size, shape, orientation, and composition of these grains. In general, a metal with small grains will be harder and stronger than one with coarse grains. Heat treatment controls the nature of the grains and their size in the metal. Small amounts of other metals (less than 1 per cent) are often added to a pure metal. This is called alloying and it changes the grain structure and properties of metals. All metals can be formed by drawing, rolling, hammering and extrusion, but some require hot-working. Metals are subject to metal fatigue and to creep (the slow increase in length under stress) causing deformation and failure. Both effects are taken into account by engineers when designing, for example, airplanes, gas-turbines, and pressure vessels for high-temperature chemical processes. Metals can be worked using machine-tools. The ways of working a metal depend on its properties. Many metals can be melted and cast in moulds, but special conditions are required for metals that react with air.

2. Прочитайте текст снова и письменно ответьте на вопросы:

1. What are metals and what do we call metallurgy?

2. Why are most metals dense?

3. Why are metals malleable?

4. What is malleability?

5. What are grains?

ВАРИАНТ 4

1. Прочитайте и письменно переведите на русский язык текст:







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.