Здавалка
Главная | Обратная связь

Применение дифференциала.



Приложение дифференциала к приближенным вычислениям.

Из рисунка видно, что приращение функции Dy и дифференциал dy связаны приближенным равенством Dy » dy. Поэтому с помощью дифференциала можно вычислять значения функции , если известно Dx (приращение): Þ Þ .

Пример: Вычислить приближенно .

Введем функцию . Значение x=1,004, берем значение .

= =1, =1,004-1=0,004.

Вычислим дифференциал = = =0,002, = =1+0,002=1,002.

Производные высших порядков.

 

Производная высших порядков.

Пусть функция имеет производную в каждой точке некоторого интервала. - также является функцией от x, следовательно, ее тоже можно продифференцировать. - производная второго порядка или вторая производная. - производная третьего порядка или третья производная и т.д. - производная n-порядка.

Обозначаются: y¢, y², y²¢, yIV или y(1), y(2), y(3), y(4)...

Пример: , , , , , , .

Механический смысл второй производной.

Вторая производная есть ускорение a прямолинейного движения тела в данный момент времени, выражает зависимость пройденного пути от времени t, т.е. если , то .

 

Уравнение касательной и нормали к кривой.

Из пучка прямых, проходящих через точку , выберем одну прямую ‒ касательную к графику функции: . Из геометрического смысла производной угловой коэффициент касательной: .

Þ .

Þ – уравнение касательной.

Определение: Нормалью к кривой называется прямая, перпендикулярная к касательной, проведенной в точке касания с абсциссой x0.

Так как нормаль перпендикулярна к касательной, то угловой коэффициент нормали: (из условия перпендикулярности прямых). Отсюда: Þ – уравнение нормали.

Пример: Составить уравнение касательной и нормали к графику функции в точке с абсциссой равной 1.

Ордината точки касания:

Производная: .

Найдем значение производной в точке x0:

,

Уравнение касательной: Þ

Уравнение нормали: Þ .

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.