Здавалка
Главная | Обратная связь

Тепловое движение в кристаллах. Теплоемкость кристаллов



Узлы кристаллической решетки определяют средние положения частиц. Сами же частицы непрерывно колеблются около этих средних положений, причем интенсивность колебаний растет с температурой.

Силы притяжения между частицами сменяются быстро возрастающими с уменьшением расстояния силами отталкивания. Взаимодействие между частицами любого вида в кристалле может быть представлено потенциальной кривой, изображенной на рис.17.19. Кривая несимметрична относительно минимума. По этой причине только очень малые колебания частиц около положения равновесия будут иметь гармонический характер. С ростом амплитуды колебаний, что происходит при повышении температуры, все сильнее будет проявляться ангармоничность. Это приводит, как показано на рис.17.18, к возрастанию средних расстояний между частицами и, следовательно, к увеличению объема кристалла. Так объясняется тепловое расширение кристаллов.

При смещении частиц из положения равновесия в любом направлении появляется возвращающая сила, вследствие чего возникают колебания частицы. Каждое частице в кристалле следует приписывать три колебательные степени свободы, соответствующие трем взаимно перпендикулярным направлениям. Поскольку колебательная система характеризуется полной механической энергией, состоящей из кинетической и потенциальной энергии, то каждой колебательной степени свободы приписывается энергия (половина kT –в расчете на кинетическую энергию, а половина kT – в расчете на потенциальную энергию).

Следовательно, на каждую частицу (атом в атомной решетке, ион в ионной или металлической решетке) приходится в среднем энергия, равная 3kT.Энергию киломоля вещества в кристаллическом состоянии, можно получить умножением на NA: в случае химически простых веществ. В случае вещества, как, например, NaCl, число частиц составляет 2NА, так как в моле NaCl содержится NА ионов Na и NА ионов Cl.

Ограничиваясь рассмотрением химически простых веществ, образующих атомные или металлические кристаллы, для внутренней энергии киломоля вещества, получим

. (17.83)

Теплоёмкость при постоянном объеме кДж/кмоль К.

Поскольку объем твердых тел при нагревании изменяется незначительно, их теплоемкость при постоянном давлении Сp незначительно отличается от теплоемкости при постоянном объеме Cv.

Формула (17.83) является математическим выражением закона Дюлонга и Пти, установленного опытным путем. При комнатной температуре закон выполняется в хорошем соответствии с опытом для многих веществ. Однако при низких температурах теплоемкость обнаруживает сильную зависимость от температуры, как это видно из рис.17.20. Вблизи абсолютного нуля теплоемкость всех тел пропорциональна T3, и только при температурах, близких к комнатным температурам, начинает выполняться закон (17.83). (У алмаза формула закон Дюлонга и Пти выполняется при температуре, порядка 1000˚С).

Таким образом, классическая теория теплоемкости лишь частично соответствует опытным данным. В хорошем согласии с опытом находится теория, созданная Эйнштейном и Дебаем, которая, во-первых, учитывает квантование энергии колебательного движения, а во-вторых, учитывает, что колебания частиц в кристаллической решетке не являются независимыми. Сильное взаимодействие между частицами кристалла приводит к тому, что возмущение, вызванное колебаниями какой-либо частицы, передается другим частицам и порождает в кристалле бегущую волну. Достигнув границы кристаллы, волна отражается, возникают стоячие волны. Тепловое движение в кристаллах согласно теории может быть представлено как наложение стоячих волн с целым спектром дискретных частот.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.