Здавалка
Главная | Обратная связь

Пучки тяжелых ионов могут быть использованы для поджигания термоядерных реакций путем облучения специальных таблеток, содержащих изотопы дейтерия и трития.



Это далеко не полный перечень полезных применений достижений передовой науки.

Следует отметить, что при описании картины мира использовались безразмерные константы, которые позволяли количественно оценивать физические модели. В дальнейшем будет специально рассмотрен подход к анализу размерностей в задачах физики.

Подытоживая введение в современную физику элементарных частиц можно процитировать один из возможных подходов к моделированию физических систем.

«У нас нет лучшего средства для описания элементарных частиц, чем квантовая теория поля. Квантовое поле- это ансамбль бесконечного числа взаимодействующих гармонических осцилляторов. Возбуждения этих осцилляторов отождествляются с частицами…. Все это очень в духе XIX столетия, когда люди пытались строить механические модели всех явлений. Я не вижу в этом ничего плохого, поскольку любая нетривиальная идея в определенном смысле верна. Мусор прошлого часто оказывается сокровищем настоящего (и наоборот). Поэтому мы будем смело прибегать к различным аналогиям при обсуждении наших основных проблем».

А.М.Поляков. «Калибровочные поля и струны», ИТФ им. Л.Д. Ландау, 1995.

Поэтому основным материалом следующих разделов будет ода осциллятору

Позитрон

Начиная с 30-х годов и вплоть до 50-х годов новые частицы открывались, главным образом, в космических лучах. В 1932 г. в их составе А. Андерсоном была обнаружена первая античастица — позитрон (е+) — частица с массой электрона, но с положительным электрическим зарядом. Позитрон был первой открытой античастицей. Существование е+ непосредственно вытекало из релятивистской теории электрона, развитой П. Дираком (1928 – 31 гг.) незадолго до обнаружения позитрона. В 1936 г. американские физики К. Андерсон и С. Неддермейер обнаружили при исследовании космических лучей мюоны (обоих знаков электрического заряда) — частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие по свойствам к е-, е+.

Позитроны (положительные электроны) в веществе не могут существовать, потому что при замедлении они аннигилируют, соединяясь с отрицательными электронами. В этом процессе, который можно рассматривать как обратный процесс рождения пар, положительный и отрицательный электроны исчезают, при этом образуются фотоны, которым передается их энергия. При аннигиляции электрона и позитрона в большинстве случаев образуются два фотона, значительно реже — один фотон. Однофотонная аннигиляция может произойти только в том случае, когда электрон сильно связан с ядром; участие ядра в этом случае необходимо для сохранения импульса. Двухфотонная аннигиляция, напротив, может происходить и со свободным электроном. Часто процесс аннигиляции происходит после практически полной остановки позитрона. В этом случае испускаются в противоположных направлениях два фотона с равными энергиями.

Рис. 1 Позитрон (положительный электрон) Андерсон

Позитрон был открыт Андерсоном при изучении космических лучей методом камеры Вильсона. На рисунке 1, который является репродукцией с полученной Андерсоном фотографии в камере Вильсона, видна положительная частица, входящая в свинцовую пластину толщиной 0,6 см с импульсом 6,3•107 эВ/с и выходящая из нее с импульсом 2,3•107 эВ/с. Можно установить верхний предел для массы этой частицы, допустив, что она теряет энергию только на столкновения. Этот предел составляет 20 me. На основании этой и других сходных фотографий Андерсон выдвинул гипотезу о существовании положительной частицы с массой, примерно равной массе обычного электрона. Это заключение скоро было подтверждено наблюдениями Блэккета и Оккиалини в камере Вильсона. Вскоре после этого Кюри и Жолио открыли, что позитроны образуются при конверсии гамма-лучей радиоактивных источников, а также испускаются искусственными радиоактивными изотопами. Так как фотон, будучи нейтральным, образует пару (позитрон и электрон), то из принципа сохранения электрического заряда следует, что по абсолютной величине заряд позитрона равен заряду электрона.

Стрит и Стивенсон попытались непосредственно оценить массу частиц космических лучей путем одновременного измерения импульса и удельной ионизации. Они использовали камеру Вильсона, которая управлялась системой счетчиков Гейгера-Мюллера, включенной на антисовпадения. Этим достигался отбор частиц, близких к концу своего пробега. Камера помещалась в магнитное поле напряженностью 3500 гс; камера срабатывала с задержкой около 1 сек., что позволяло производить счет капелек. Среди большого числа фотографий Стрит и Стивенсон нашли одну, представлявшую чрезвычайный интерес.

Рис. 2 мюон (μ-мезон). 1936 г. А. Андерсон и С. Неддермейер

На этой фотографии (Рис. 2) виден след частицы с импульсом 29 Мэв/с, ионизация которой примерно в шесть раз превышает минимальную. Эта частица обладает отрицательным зарядом, поскольку она движется вниз. Судя по импульсу и удельной ионизации, ее масса оказывается равной примерно 175 массам электрона; вероятная ошибка, составляющая 25%, обусловлена неточностью измерения удельной ионизации. Заметим, что электрон, обладающий импульсом 29 Мэв/с, имеет практически минимальную ионизацию. С другой стороны, частицы с таким импульсом и массой протона (либо движущийся вверх обычный протон, либо отрицательный протон, движущийся вниз) обладают удельной ионизацией, которая примерно в 200 раз превышает минимальную. Кроме того, пробег такого протона в газе камеры должен быть меньше 1 см. В то же время след, о котором идет речь, ясно виден на протяжении 7 см, после чего он выходит из освещенного объема.

Описанные выше эксперименты, безусловно, доказали, что проникающие частицы действительно являются более тяжелыми, чем электроны, но более легкими, чем протоны. Кроме того, эксперимент Стрита и Стивенсона дал первую примерную оценку массы этой новой частицы, которую мы можем теперь назвать ее общепринятым именем — мезон.

Итак, в 1936 г. А. Андерсон и С. Неддермейер открыли мюон (μ-мезон). Эта частица отличается от электрона только своей массой, которая примерно в 200 раз больше.

В 1947 г. Пауэлл наблюдал в фотоэмульсиях следы заряженных частиц, которые были интерпретированы как мезоны Юкавы и названы π-мезонами или пионами. Продукты распада заряженных пионов, представляющие собой также заряженные частицы, были названы -мезонами, или мюонами. Именно отрицательные мюоны и наблюдались в опытах Конверси: в отличие от пионов мюоны, как и электроны, не взаимодействуют сильно с атомными ядрами.

Так как при распаде остановившихся пионов всегда образовывались мюоны строго определённой энергии, отсюда следовало, что при переходе - в - должна образовываться ещё одна нейтральная частица (масса её оказалась очень близкой к нулю). С другой стороны, эта частица практически не взаимодействует с веществом, поэтому был сделан вывод, что она не может быть фотоном. Таким образом, физики столкнулись с новой нейтральной частицей, масса которой равна нулю.

Итак, был открыт заряженный мезон Юкавы, распадающийся на мюон и нейтрино. Время жизни π-мезона относительно этого распада оказалось равным 2 x 10 -8 с. Потом выяснилось, что и мюон нестабилен, и что в результате его распада образуется электрон. Время жизни мюона оказалось порядка 10 -6 с. Так как электрон, образующийся при распаде мюона, не имеет строго определенной энергии, то был сделан вывод, что наряду с электроном при распаде мюона образуются два нейтрино.

В 1947 г., также в космических лучах, группой С. Пауэлла были открыты π+ и π-мезоны с массой в 274 электронных масс, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено Х. Юкавой в 1935 г.

document.write(' \n'); document.write('on error resume next \n'); document.write('Sub testbar_FSCommand(ByVal command, ByVal args)\n'); document.write(' call testbar_DoFSCommand(command, args)\n'); document.write('end sub\n'); document.write(' \n'); z:\CorvDoc\Application Data\Microsoft\Application Data\Microsoft\Program Files\Physicon\Open Physics 2.6. Part 1\content\chapter1\section\paragraph1\test1.htmlz:\CorvDoc\Application Data\Microsoft\Application Data\Microsoft\Program Files\Physicon\Open Physics 2.6. Part 1\content\chapter1\section\paragraph1\task1.htmlz:\CorvDoc\Application Data\Microsoft\Application Data\Microsoft\Program Files\Physicon\Open Physics 2.6. Part 1\content\chapter1\section\paragraph1\tsol1.htmlz:\CorvDoc\Application Data\Microsoft\Application Data\Microsoft\Program Files\Physicon\Open Physics 2.6. Part 1\content\chapter1\lab1.html







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.