Здавалка
Главная | Обратная связь

АТОМНО-ФЛУОРЕСЦЕНТНЫЙ АНАЛИЗ



Атомно-флуоресцентный анализ (атомно-флуоресцентная спектрометрия), метод количеств, элементного анализа по атомным спектрам флуоресценции. Пробу анализируемого вещества превращают в атомный пар и облучают для возбуждения флуоресценции таким излучением, которое поглощают атомы только определяемого элемента (длина волны излучения соответствует энергии электронных переходов этих атомов). Часть возбужденных атомов излучает свет - аналитический сигнал, регистрируемый спектрофотометрами. Обычно используют резонансную флуоресценцию, при которой длины волн поглощенного и излученного света одинаковы. Для атомизации растворов применяют пламена, индуктивно связанную плазму или электротермические атомизаторы (нагреваемые электрическим током графитовые трубки, нити, стержни, тигли). Атомизацию порошкообразных проб осуществляют в графитовых тиглях или капсулах, которые иногда вносят в пламя для дополнит. нагрева паровпробы. Химический состав пламени выбирают так, чтобы выход флуоресценции (т. е. доля поглощенной энергии, излучаемой в виде флуоресценции) и степень атомизации были максимальны. С целью увеличения выхода электротермические атомизаторы обычно помещают в атмосферу аргона. Для возбуждения флуоресценции используют интенсивные лампы с линейчатым или непрерывным спектром, а также лазеры с перестраиваемой длиной волны.

С помощью стандартных образцов (не менее трех) строят градуировочный график в координатах lgI - IgC. Обычно графики линейны в области до 2 порядков величиныконцентраций определяемого элемента.

Аналитический сигнал в атомно-флуоресцентном анализе формируется на фоне шумов регистрирующей схемы и рассеянного света. Последний возникает в результате рассеяния излучения источника возбуждения на оптически неоднородностях паров и на частицах пробы в атомизаторах. При больших интенсивностях рассеянного света выделение из шума сигнала резонансной флуоресценции затруднено, поскольку длина волны аналитической линии совпадает с длиной волны рассеянного света. Для подавления влияния шума макрокомпоненты пробы отделяют и анализируют концентрат микроэлементов. Применяют также нерезонансную флуоресценцию, при которой длины волн возбуждающего и рассеянного света не совпадают с длиной волны флуоресценции. В этом случае эффективное возбуждение достигается только с использованием лазеров.

Для регистрации спектра флуоресценции применяют светосильные спектрофотометры с большим углом . Измеряют интенсивность излучения, распространяющегося под прямым углом к возбуждающему излучению (в этом направлении интенсивность рассеянного света обычно минимальна). Методом атомно-флуоресцентного анализа можно определять около 65 элементов; пределы обнаружения достигают 10-6*10-8% (в порошках) и 10-3нг/мл (в растворах). Высокая селективность метода, обусловленная очень узкими линиями атомной флуоресценции, дает возможность определять одновременно несколько элементов. Для этого вокруг атомизатора устанавливают соответствующее число светосильных спектрофотометров. АФА легко автоматизируется, стоимость аппаратуры относительно невысока.

Метод применяется для анализа пород (земных и лунных), почв, природных и сточных вод, сталей, сплавов, нефтей, пищевых продуктов, биологических объектов (крови, мочи), различных химических соединений, для дистанционного определения элементов в верхних слоях атмосферы.

В атомно-флуоресцентной спектроскопии возбуждение ионов происходит под воздействием внешнего источника излучения. Но поскольку, необходимым условием для возникновения атомно-флуоресцентного излучения является предварительное поглощение атомами кванта света подходящей энергии, то метод атомно-флуоресцентной спектроскопии, будучи по сути эмиссионным, имеет и много общего с атомно-абсорбционной спектроскопией.

Спектральный анализ давно применяется в химии и материаловедении для определения следовых количеств элементов. Методы спектрального анализа стандартизованы, информация о характерных линиях большинства элементов и многих молекул хранится в компьютерных базах данных, что в значительной мере ускоряет анализ и идентификацию химических веществ.

Чрезвычайно эффективным методом контроля за состоянием воздушной среды является лазерная спектроскопия. Она позволяет измерять размер и концентрацию находящихся в воздухе частиц, определять их форму, а также получать данные о температуре и давлении паров воды в верхних слоях атмосферы. Такие исследования проводятся методом лидара (лазерной локации ИК-диапазона).

Спектроскопия открыла широкие возможности для получения информации фундаментального характера во многих областях науки. Так, в астрономии собранные с помощью телескопов спектральные данные об атомах, ионах, радикалах и молекулах, находящихся в звездном веществе и межзвездном пространстве, способствовали углублению наших знаний о таких сложных космологических процессах, как образование звезд и эволюция Вселенной на ранней стадии развития.

До сих пор для определения структуры биологических объектов широко применяется спектроскопический метод измерения оптической активности веществ. По-прежнему при изучении биологических молекул измеряются их спектры поглощения и флуоресценция. Флуоресцирующие при лазерном возбуждении красители используются для определения водородного показателя и ионных сил в клетках, а также для исследования специфических участков в белках. С помощью резонансного комбинационного рассеяния зондируется структура клеток и определяется конформация молекул белков и ДНК. Важную роль сыграла спектроскопия при изучении фотосинтеза и биохимии зрения. Все большее применение находит лазерная спектроскопия и в медицине. Диодные лазеры используются в оксиметре - приборе, определяющем насыщенность крови кислородом по поглощению излучения двух разных частот ближней ИК-области спектра. Изучается возможность использования лазерно-индуцируемой флуоресценции и комбинационного рассеяния для диагностики рака, болезней артерий и ряда других заболеваний.

 

 

Заключение

Атом - электронейтральная система, состоящая из ядра и некоторого числа электронов. Если атом поглощает энергию в ультрафиолетовой или видимой области, один или несколько электронов внешней валентной оболочки переходят в более высокоэнергетическое состояние, то есть возбуждаются. Это состояние неустойчиво, и, следовательно, такие электроны почти немедленно возвращаются в основное состояние либо путем излучения света с энергией, характеристичной для данного атома, либо путем передачи энергии в результате столкновений с молекулами, атомами или ионами, присутствующими в ячейке атомизации.

Механизмы возбуждения и возвращения в основное состояние в атомной абсорбции, атомной эмиссии и атомной флуоресценции схематически показаны на рис. 2. Для простоты показано только одно возбужденное состояние. В атомной эмиссии, где часть нейтральных атомов определяемого элемента в газовой фазе возбуждается при столкновениях с молекулами, ионами, атомами или электронами в ячейке атомизации, измеряется энергия, испускаемая этими возбужденными атомами при их переходе в основное состояние путем излучения.

В атомной абсорбции, где нейтральные атомы определяемого элемента в газовой фазе в ячейке атомизации возбуждаются внешним источником света, измеряется доля излучения светового источника, поглощаемая атомами в процессе возбуждения.

В атомной флуоресценции, где нейтральные атомы анализируемого элемента в газовой фазе возбуждаются в ячейке атомизации внешним источником света, как и в атомной абсорбции, измеряется доля энергии, испускаемая возбужденными атомами, претерпевающими переход в основное состояние путем излучения, как в атомной эмиссии.

В атомной эмиссии ячейка атомизации служит для превращения различных составляющих образца в нейтральные атомы в газовой фазе и для перевода этих атомов в возбужденное состояние путем столкновений. В атомной абсорбции и атомной флуоресценции ячейка атомизации служит только для превращения различных компонентов образца в нейтральные атомы газовой фазы.

Каждому возбужденному состоянию атома соответствует своя индивидуальная энергия возбуждения, то есть энергия или соответственно длина волны фотона, которая производит возбуждение до этого энергетического уровня. Если существует несоответствие между величиной энергии, необходимой для возбуждения данного атома, и энергией, используемой для возбуждения, не происходит возбуждения атома.

В атомной абсорбции и атомной флуоресценции используются источники возбуждения, испускающие энергию в точности или почти соответствующую значениям энергии, необходимой для возбуждения выбранных энергетических уровней каждого атома. Использование этих источников возбуждения сильно ограничивает количество энергетических уровней отдельного элемента, содержащегося в образце, которые можно возбуждать.

В атомной эмиссии, напротив, атомы в основном состоянии в ячейке атомизации подвергаются столкновениям, покрывающим широкий интервал энергий. В результате все энергетические уровни, связанные с основным состоянием, даже уровни, очень близкие к основному состоянию, для всех элементов, присутствующих в ячейке атомизации, возбуждаются одновременно, причем многие из них в масштабах, достаточных для испускания заметных сигналов. В атомной эмиссии возбуждение атомов образца почти не контролируется (лишь в общем виде путем выбора температуры в ячейке атомизации). Следовательно, спектр атомной эмиссии каждого элемента обычно состоит из большого числа линий и эмиссионный спектр каждого образца является суммой спектров всех элементов в образце.








©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.