ЦИФРОВАЯ ФИЛЬТРАЦИЯ
Цифровая фильтрация применяется для сглаживания информации, измеряемой аналого-цифровым преобразователем (АЦП) на выходе исследуемого блока или системы управления при натурных испытаниях в лабораторных или промышленных условиях, а также в реальных системах управления, в частности, при идентификации объекта управления (определении параметров его модели). При фильтрации (оценивании информации) могут использоваться как аналоговые, так ицифровые фильтры. Любая ЭВМ, в частности микроЭВМ, рассматривается как цифровой фильтр, а с использованием АЦП на входе — как фильтр дискретных данных. В настоящее время известно много формул цифровой фильтрации, отличающихся различной степенью сложности (фильтры Калмана, Винера, Чебышева и др.). Однако, начиная с Калмана, объект управления перестал быть "черным ящиком". Он предложил рекуррентные формулы цифровой фильтрации, которые вывел из известной формулы оценки среднего (математического ожидания)
где По аналогии с (4.1) запишем:
Подставим (4.1) в (4.2) и преобразуем: Обозначим:
Тогда
Очевидно, что Отсюда
Раскроем и преобразуем (4.4):
Формулы (4.3) — (4.5) называются Поэтому будем использовать упрощенную формулу (4.3) при
Дополнительные ограничения, при которых оценка по двум измерениям будет достоверной, можно получить из следующих рассуждений. Два измерения, следующие друг за другом, могут отличаться для инерционного процесса на величину: Можно считать, что это приращение всегда обусловлено шумами в (n-1) и n измерениях, а полезные сигналы равны даже в том случае, когда они по каким-либо причинам сильно отличаются друг от друга (внезапное изменение входного сигнале, обрыв датчика и т.п.). Поэтому в качестве оценки поведения входного сигнала можно выбрать соотношение:
где В качестве дополнительных ограничений с целью повышения надежности рекомендуется использовать следующее неравенство:
где Задание 1. Составить схему алгоритма и процедуру сглаживания входного массива 2. Вывести на печать исходный массив Рекомендации 1. В процедуре цифровой фильтрации сигнала необходимо вычислить коэффициент усиления модели объекта kМ, а затем 2. Для облегчения анализа и получения более структурированной программы целесообразно ввести 3 локальные логические переменные z1, z2, z3: z1 = z2 = z1 z3 = z1 где с – счетчик ненулевых значений. 3. Логические переменные по П.2 вычисляются и анализируются в цикле FOR – DO, начиная с i := 1. 4. Анализ следует производить начиная с состояния счетчика ошибок ERROR. Количество ошибок исходных данных не должно превышать 3. Если счетчик ошибок равен 3, то на экран должно выводиться сообщение: «Сбой исходных данных» и осуществляется остановка программы. 5. Далее надо анализировать z1: если z1 ложно, то в счетчик ERROR добавляется «1», а 6. Если z2 истина, то в счетчик нулевых интервалов n1 добавляется «1», а 7. И наконец, последний анализ: если z3 истина, то можно находить сглаженное значение по формуле (4.6). 8. В этой же процедуре можно вычислить время запаздывания объекта:
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|