Память в нейрофизиологии
Память - одно из свойств нервной системы, заключающееся в способности какое-то время сохранять информацию о событиях внешнего мира и реакциях организма на эти события, а также многократно воспроизводить и изменять эту информацию. Память свойственна животным, имеющим достаточно развитую центральную нервную систему (ЦНС). Объём памяти, длительность и надёжность хранения информации, как и способность к восприятию сложных сигналов среды и выработке адекватных реакций, пропорциональны числу задействованных в этих процессах нервных клеток. У кишечнополостных формируются лишь простые суммационные рефлексы, у большинства членистоногих и моллюсков память выражается в привыкании, то есть в торможении более или менее готовых программ поведения или отдельных реакций, неадекватных определённым условиям среды. Головоногие моллюски по способности к обучению сравнимы с птицами и млекопитающими. В онтогенезе высших животных возможности памяти как по объёму, так и по сложности запоминаемых ситуаций возрастают по мере созревания нейронов и миелинизации нервных волокон мозга. Физиологические исследования памяти обнаруживают 2 основных этапа её формирования, которым соответствуют 2 вида памяти: кратковременная и долговременная. Кратковременная память характеризуется временем хранения информации от долей секунд до десятков минут и разрушается воздействиями, влияющими на согласованную работу нейронов (электрошок, наркоз, гипотермия и др.). Долговременная память, время хранения информации в которой сравнимо с продолжительностью жизни организма, устойчива к воздействиям, нарушающим кратковременную память. Переход от первого вида памяти ко второму, называемый консолидацией, постепенен и связан с активацией ряда биохимических процессов. Опыты с иссечением участков коры больших полушарий головного мозга и электрофизиологическими исследования показывают, что «запись» каждого события распределена по более или менее обширным зонам мозга. Материальным носителем информации о разных событиях является не возбуждение разных нейронов, а различные комбинации совозбуждённых нейронов (нейросети). Новые реакции вырабатываются и запоминаются нервной системой в основном либо на основе создания новых синаптических связей между имеющимися нейронами, либо на основе изменения эффективности уже имеющихся синаптических связей. Под запоминанием (долговременным) подразумевается изменение способности одних нейронов возбуждаться при возбуждении других нейронов. Долговременные изменения эффективности синапсов могут быть обусловлены изменениями в биосинтезе белков, от которых зависит чувствительность синаптической мембраны к медиатору (долговременная потенциация). Установлено, что биосинтез белков активируется при возбуждении нейронов на разных уровнях организации ЦНС, а блокада синтеза нуклеиновых кислот или белков затрудняет или исключает формирование долговременной памяти. Очевидно, что одна из функций активации синтеза при возбуждении — структурная фиксация нейронных сетей, что и лежит в основе долговременной памяти. Установление ассоциаций между нейронами (то есть путей распространения возбуждения) может происходить как за счёт увеличения проводимости имеющихся синапсов, так и в результате возникновения дополнительных синапсов. Оба возможных механизма нуждаются в интенсификации белкового синтеза. Первый — сводится к частично изученным явлениям клеточной адаптации и хорошо согласуется с представлением об универсальности основных биохимических систем клетки. Второй — требует направленного роста отростков нейронов. По современным представлениям, память является неотъемлемой частью таких процессов, как · обучение; · прогнозирование будущего и воображение несуществующего (по-видимому, оба процесса являются процедурами «нарезания и перетасовки фрагментов воспоминаний»); · сознание и самоидентификация индивидуума. Память и обучение Привыкание можно рассматривать как суммацию тормозных стимулов. Память и обучение являются сторонами одного процесса. Под обучением подразумевают обычно механизмы приобретения и фиксации информации, а под памятью - механизмы хранения и извлечения этой информации. Процессы обучения можно разделить на неассоциативные и ассоциативные. Неассоциативное обучение рассматривается как эволюционно более древнее и не подразумевающее связи между тем, что запоминается и какими-либо ещё стимулами. Ассоциативное основывается на формировании связи между несколькими стимулами. Например, классический вариант выработки условного рефлекса по Павлову: установление связи между нейтральным условным стимулом и безусловным стимулом, вызывающим безусловный рефлекторный ответ. Безусловные рефлексы в эту классификацию не входят, так как осуществляются на основе унаследованных паттернов связей между нервными клетками. Неассоциативное обучение делится на суммацию, привыкание, долговременную потенциацию и импринтинг. Суммация Вариант с участием блокируемых магнием глутамат-эргических ионных (Ca, Na) каналов (каналы NMDA-типа), способных вернуться в неактивное состояние только через часы. Суммация - постепенное увеличение реакции на повторяющиеся предъявления ранее индифферентного стимула. Результатом суммации является обеспечение реакции организма на слабые, но длительно действующие стимулы, которые потенциально могут иметь какие-то последствия для жизнедеятельности индивида. В обычной ситуации реакция развивается так: сильный стимул вызывает в чувствительном нейроне целую пачку из потенциалов действия, что приводит к большому выбросу медиатора из синаптического окончания аксона чувствительного нейрона на двигательном нейроне, и этого оказывается достаточно для возникновения надпорогового постсинаптического потенциала и запуска в мотонейроне потенциала действия. Иная ситуация наблюдается при развитии суммации. Один сценарий развития суммации заключается в ритмичном использовании серии слабых стимулов, каждый из которых недостаточен для выброса медиатора в синаптическую щель. При этом если частота стимуляции достаточно велика, то в пресинаптическом окончании накапливаются ионы кальция, так как ионные насосы не успевают откачивать их в межклеточную среду. В итоге очередной потенциал действия может вызвать выброс медиатора, которого хватит на то, чтобы возбудить постсинаптическиймотонейрон. Если при этом ритмичную стимуляцию ранее подпороговыми стимулами не прерывать, то приходящие ПД будут nродолжать запускать рефлекс, так как высокое содержание Са2+ в окончании чувствительного нейрона сохраняется. Если же сделать паузу в стимуляции, то Ca2+ будет удален и для запуска рефлекса слабыми стимулами опять потребуется предварительная суммация. Другой сценарий развития суммации наблюдается при однократном, но сильном раздражении, в результате чего к пресинаптическому окончанию на двигательном нейроне приходит высокочувствительная серия импульсов, приводящая к поступлению в окончание большого количества ионов Са2+, которого хватает на возбуждение следующего в цепи нейрона ранее подпороговым стимулом. Продолжительность такого эффекта может составлять секунды. Способность к суммации, по-видимому, лежит в основе кратковременной нейрологической памяти. Получая какую-либо информацию через систему анализаторов (приглядываясь, прислушиваясь, принюхиваясь, осторожно пробуя новую для нас пищевую приправу), мы обеспечиваем ритмическую стимуляцию синапсов, через которые проходит сенсорный сигнал. Эти синапсы в течение нескольких минут сохраняют повышенную возбудимость, облегчая проведение импульсов, и, таким образом, сохраняет след о переданной информации. Однако суммация, будучи эволюционно ранним механизмом обучения, быстро исчезает и не может противостоять любым сильным внешним воздействиям на организм. 1 - гиппокамп; 2 - свод; 3 - мамиллярное тело; 4 - передниеядра таламуса; 5 - поясная извилина; 6 - зубчатая извилина Привыкание При многократном раздражении средней силы реакция на него ослабляется или вообще исчезает. Это явление называют "привыкание" (или "габитуация"). Причины привыкания разнообразны и первым из них является адаптация рецепторов. Вторая причина - накопление Са2+ в пресинатических окончаниях на тормозных нейронах. При этом повторные сигналы, исходно незначимые для тормозных нейронов, постепенно суммируются, а затем запускают тормозные нейроны, активность которых блокирует прохождение сигналов по рефлекторной дуге. Привыкание можно рассматривать как суммацию тормозных сигналов. Нужно подчеркнуть, что суммация и привыкание, как и другие формы синаптической пластичности, являются просто следствием структуры синапсов и организации нейронов. Долговременная потенциация Долговременная потенциация возникает в том случае, когда животному предъявляют некий стимул, который оно различает, но который при этом слишком слаб для того, чтобы вызвать ответную реакцию. После длительной паузы (1 - 2 ч) животному предъявляют сильный стимул, который вызывает исследуемую реакцию. Следующую стимуляцию проводят ещё через 1 - 2 ч с помощью слабого сигнала, ранее не приводившего к срабатыванию рефлекса. У животных, у которых нервная система способна к долговременной потенциации, возникает рефлекторный ответ. В дальнейшем интервал между сильной и слабой стимуляцией может быть увеличен до 5 и даже 10 ч, а возбудимость нервной системы все время будет оставаться повышенной. Долговременная потенциация может рассматриваться как вариант "длительной" кратковременной памяти, распространяющейся на дневной период бодрствования человека - с утра до вечера. Импринтинг Вариант с участием глутамин-эргических рецепторов сопряжённых, например, с аденилат-циклазой, с последующим усилением экспрессии генов рецепторов к глутамину. Это явление определяют как устойчивую индивидуальную избирательность по отношению к внешним стимулам в определенные периоды онтогенеза. Наиболее известны следующие варианты импринтинга: запоминание родителя детенышем; запоминание детёныша родителем; импринтинг будущего полового партнёра. В отличие от условного рефлекса, эта связь, во-первых, образуется только в строго определенный период жизни животного; во-вторых, образуется без подкрепления; в-третьих, в дальнейшем оказывается очень стабильной, практически не подлежит угасанию и может сохраняться в течение всей жизни особи. Было nоказано, что импринтинr сопровождается активацией нейронов промежуточной области медиовентрального гиперстриатума. Повреждение этой области нарушало у цыплят и импринтинг, и другие виды памяти. В процессе запоминания/обучения по типу импринтинга устанавливаются контакты групп нейронов одного ядра со строго определенными группами другого ядра. По мере обучения могут либо увеличиваться размеры нейронов, их количество в пределах соответствующих структур, число шипиков и синаптических контактов - либо число нейронов, синаптических связей и NMDА-рецепторов в синапсах может даже уменьшаться, но сродство оставшихся рецепторов к специфическому медиатору будет возрастать. Можно предложить следующую модель развития импринтинга. Выделяющаяся из окончания нейрона глутаминовая кислота действует на метаботропные рецепторы на поверхности постсинаптического нейрона и запускает выработку вторичного (внутриклеточного) посредника (например, цАМФ). Вторичный посредник через каскад регуляторных реакций усиливает синтез белков, формирующих новые синапсы к глутамату, которые встраиваются в мембрану нейрона таким образом, чтобы улавливать сигналы от самого активного пресинаптического окончания, передающего информацию о характеристике объекта импринтинга. Встраивание в мембрану новых рецепторов увеличивает эффективность синаптической передачи, и сумма вызванных постсинаптических потенциалов от приходящих сигналов достигает пороговою уровня. Затем возникнут ПД и поведенческая реакция будет запущена. Следует подчеркнуть, что нейрохимические и синаптические изменения протекают не мгновенно, а требуют времени. Для успешного импринтинга важно наличие стабильного сенсорного "давления" на обучающийся нейрон, например, постоянное присутствие матери. Если это условие не выполняется, то импринтинг вообще не возникает. Обученные нейроны способны поддерживать концентрацию рецепторов на постсинаптической мембране "запечатленного" синапса на постоянном высоком уровне, что обеспечивает стабильность импринтинга, позволяющую рассматривать его как специфический вариант долговременной памяти. Ассоциативное обучение Отличие от импринтинга в том, что необходима одновременная стимуляция дополнительным нейромедиатором. Ассоциативное обучение основывается на образовании связи (ассоциации) между двумя стимулами. В качестве примера можно рассмотреть формирование условного рефлекса, когда на один нейрон одновременно подаётся сигнал и от некоторого незначительного стимула, и от центра положительного подкрепления из гипоталамуса. При этом вероятно, что на разных постсинаптических участках генерируются различные вторичные посредники, и изменение экспрессии генов рецепторов к нейромедиаторам, действующим на данный нейрон будет обусловлено суммарным эффектом этих вторичных посредников. Предположительно, процессы консолидации памяти начинаются с усиления глутаматной передачи, за счёт глутаматных рецепторов NMDA-типа. Такие рецепторы способны связать глутамат только после некоторой предварительной деполяризации мембраны, вызванной поступлением в постсинаптическую клетку ионов натрия в результате работы каналов, связанных с другим типом глутаматных рецепторов. Связав глутамат, NMDA-рецепторы инактивируются только по прошествии продолжительного времени (часы). В активном состоянии они связываются с каналами для ионов кальция. Повышение концентрации кальция приводит к активации ряда киназ, запускающих каскад дальнейших реакций. В частности, активированная Ca2+ протеинкиназа А переходит в ядро, регулируя там экспрессию целого ряда генов, что в конечном счёте приводит к формированию новых синапсов между взаимодействующими в процессе ассоциативного обучения нейронами. По-мимо этого активация киназ приводит к изменению активности других ионных каналов, дополнительно увеличивая проницаемость постсинаптической мембраны обучающегося нейрона к ионам кальция и уменьшая - к ионам калия. Кроме того, в синапсах наблюдается агрегация белковых молекул в слоистые структуры, формирующие транссинаптические каналы (волокна), что резко облегчает прохождение медиатора и резко повышает проводимость синапса. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|