Поиск тёмной материи в скоплениях галактик
Наблюдая дисперсию скоростей галактик в скоплениях, Ф. Цвикки совместно с С. Смитом обнаружил, что получаемая из теоремы вириала масса гораздо больше, чем суммарная масса галактик. Было выдвинуто предположение, что внутри скоплений галактик, как и в самой галактике, есть некая скрытая масса, проявляющая себя только гравитационным образом. Опровергнуть или подтвердить это можно, зная гравитационный потенциал в каждой точке и основываясь на законе всемирного тяготения Ньютона. Гравитационный потенциал можно узнать, исследуя эффект гравитационного линзирования. На основании полученных данных учёными было сделано два вывода. С одной стороны, было подтверждено наличие тёмной материи. С другой, было обнаружено необычное поведение газа и тёмной материи. Раньше считалось, что во всех процессах тёмная материя должна увлекать за собой газ (это предположение легло в основу теории иерархической эволюции галактик). Однако в MACS J0025.4-1222, являющимся столкновением двух массивных скоплений галактик, поведение газа и тёмной материи диаметрально противоположны. Поиск далёких галактик Поиск далёких галактик сопряжён со следующими проблемами: значительно хуже чувствительность приёмников в инфракрасном диапазоне, куда из-за космологического красного смещения перемещается всё видимое излучение, вплоть до линии Lα (Лайман альфа) и лаймановского скачка; излучение далёких галактик ослаблено как из-за космологических эффектов, так и из-за того, что молодые галактики, по современным представлениям, на больших единицах красного смещения z (а значит, на более ранних этапах своей жизни) гораздо меньше Млечного Пути и сходны с Магеллановыми Облаками. Многократное усиление пучка света, вызванное гравитационным линзированием, помогает в решении обеих проблем, позволяя наблюдать галактики на z > 7. Исходя из этих теоретических представлений, группа астрономов провела наблюдения, в результате которых был составлен список объектов-кандидатов в сверхдалёкие галактики. Звездообразование M82, галактика с активным звездообразованием Звездообразование — крупномасштабный процесс в галактике, при котором из межзвёздного газа массово начинают формироваться звёзды. Спиральные ветви, общая структура галактики, звёздное население, светимость ихимический состав межзвёздной среды — результаты данного процесса. Размер области, охваченной звездообразованием, как правило, не превышает 100 пк. Однако встречаются комплексы со вспышкой звездообразования, называемые сверхассоциациями, размерами сопоставимые с неправильной галактикой. В нашей и нескольких ближайших галактиках возможно непосредственное наблюдение процесса. В таком случае признаками происходящего звездообразования являются: · наличие звёзд спектральных классов O-B-A и связанных с ними объектов (области HII, вспышки новых и сверхновых звёзд); · инфракрасное излучение, как от нагретой пыли, так и от самих молодых звёзд; · радиоизлучение газопылевых дисков вокруг формирующихся и новорождённых звёзд; · доплеровское расщепление молекулярных линий во вращающемся диске вокруг звёзд; · доплеровское расщепление молекулярных линий тонких быстрых струй (джетов), вырывающихся из этих дисков (с их полюсов) со скоростью примерно 100 км/с; · наличие ассоциаций, скоплений и звёздных комплексов с массивными звёздами (массивные звёзды почти всегда рождаются большими группами); · наличие глобул. С увеличением расстояния уменьшается и видимый угловой размер объекта, и, начиная с некоторого момента, разглядеть отдельные объекты внутри галактики не представляется возможным. Тогда критериями протекающего в далёких галактиках звездообразования служат: · высокая светимость в эмиссионных линиях, в частности, в Hα; · повышенная мощность в ультрафиолетовой и голубой части спектра, за которую непосредственно отвечает излучение массивных звёзд; · повышенное излучение на длинах волн вблизи 8 мкм (ИК диапазон); · повышенная мощность теплового и синхротронного излучения в радиодиапазоне; · повышенная мощность рентгеновского излучения, связанная с горячим газом. В общем виде процесс звездообразования можно разделить на несколько этапов: формирование крупных газовых комплексов (с массой 107 Мʘ), появление в них гравитационно связанных молекулярных облаков, гравитационное сжатие наиболее плотных их частей до возникновения звёзд, нагрев газа излучением молодых звёзд и вспышки новых и сверхновых, уход газа. Чаще всего области звездообразования можно найти: · в ядрах крупных галактик, · на концах спиральных рукавов, · на периферии неправильных галактик, · в наиболее яркой части карликовой галактики. Звездообразование является саморегулирующимся процессом: после формирования массивных звёзд и их короткой жизни происходит ряд мощных вспышек, уплотняющих и нагревающих газ. С одной стороны, уплотнение приводит к ускорению сжатия сравнительно густых облачков внутри комплекса, но с другой стороны нагретый газ начинает покидать область звездообразования, и чем больше его нагревают, тем быстрее он уходит. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|