Здавалка
Главная | Обратная связь

Пропионовая кислота



Пропионовая кислота может поступать в природные воды со стоками химической промышленности.

Пропионовая кислота способна ухудшать органолептические свойства воды, придавая ей запах и кисловато-вяжущий привкус. Наиболее существенным для пропионовой кислоты является неблагоприятное влияние на санитарный режим водоемов и в первую очередь на процессы БПК и кислородный режим. На полное биохимическое окисление 1 мг пропионовой кислоты затрачивается 1.21 -1.25 мг молекулярного кислорода [39].

ПДКвр — 0.6 мг/дм3 [33].

[Индекс]

Масляная кислота

ПДКв — 0.7 мг/дм3 (лимитирующий признак вредности — общесанитарный) [26], [33].

[Индекс]

Молочная кислота

В природных водах молочная кислота в микрограммовых концентрациях присутствует в результате образования в процессах жизнедеятельности и посмертного разложения водных организмов и биохимической трансформации содержащихся в воде органических веществ.

Молочная кислота находится в воде преимущественно в растворенном состоянии в виде ионов и недиссоциированнных молекул, количественное соотношение между которыми определяется константой диссоциации К25°С = 3.10-4 и зависит от рН среды. Молочная кислота частично мигрирует в виде комплексных соединений с тяжелыми металлами.

Концентрация молочной кислоты подвержена заметным сезонным изменениям, что определяется главным образом интенсивностью биохимических процессов, протекающих в воде.

Молочная кислота в незагрязненных поверхностных водах обнаруживалась в концентрациях от 0.1 до 0.4 мкгэкв/дм3 [31]. ПДКв — 0.9 мг/дм3 (лимитирующий признак вредности — общесанитарный)[33].

[Индекс]

Бензойная кислота

В незагрязненных природных водах бензойная кислота в небольших количествах образуется в процессах жизнедеятельности водных организмов и их посмертного разложения. Основным источником поступления больших количеств бензойной кислоты в водоемы являются стоки промышленных предприятий, так как бензойная кислота и различные ее производные широко используются при консервировании пищевых продуктов, в парфюмерной промышленности, для синтеза красителей и т.д.

Бензойная кислота хорошо растворима в воде, и содержание ее в поверхностных водах будет определяться концентрацией сбрасываемых сточных вод и скоростью биохимического окисления.

Токсичными свойствами бензойная кислота практически не обладает. Неблагоприятное действие ее на водоем связано с изменением кислородного режима и рН воды [31].

ПДКв — 0.6 мг/дм3 (лимитирующий признак вредности — общесанитарный) [26], [33].

[Индекс]

Гумусовые кислоты

Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений.

Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации "живого органического вещества".

Гумусовые кислоты в поверхностных водах находятся в растворенном, взвешенном и коллоидном состояниях, соотношения между которыми определяются химическим составом вод, рН раствора, биологической ситуацией в водоеме и другими факторами.

Наличие в структуре фульво- и гуминовых кислот карбоксильных и фенолгидроксильных групп, аминогрупп способствует образованию прочных комплексных соединений гумусовых кислот с металлами. Некоторая часть гумусовых кислот находится в виде малодиссоциированных солей - гуматов и фульватов. В кислых водах возможно существование свободных форм гуминовых и фульфокислот.

Гумусовые кислоты в значительной степени влияют на органолептические свойства воды, создавая неприятный вкус и запах, затрудняют дезинфекцию и получение особо чистой воды, ускоряют коррозию металлов. Они оказывают влияние также на состояние и устойчивость карбонатной системы, ионные и фазовые равновесия и распределение миграционных форм микроэлементов. Повышенное содержание гумусовых кислот может оказывать отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в водоеме, идущего на их окисление, и их разрушающего влияния на устойчивость витаминов. В то же время при разложении гумусовых кислот образуется значительное количество ценных для водных организмов продуктов, а их органоминеральные комплексы представляют наиболее легко усваиваемую форму питания растений микроэлементами [14], [31].

Почвенные кислоты: гуминовые (в щелочной среде) и особенно хорошо растворимые фульвокислоты играют наибольшую роль в миграции тяжелых металлов [13].

[Индекс]

Гуминовые кислоты

Гуминовые кислоты содержат циклические структуры и различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.). Молекулярная масса их колеблется в широком интервале (от 500 до 200 000 и более). Относительная молекулярная масса условно принимается равной 1300 - 1500.

Содержание гуминовых кислот в поверхностных водах обычно составляет десятки и сотни микрограммов в 1 дм3 по углероду, достигая нескольких миллиграммов в 1 дм3 в природных водах лесных и болотистых местностей, придавая им характерный бурый цвет. В воде многих рек гуминовые кислоты не обнаруживаются [31].

[Индекс]

Фульвокислоты

Фульвокислоты являются частью гумусовых кислот, не осаждающихся при нейтрализации из раствора органических веществ, извлеченных из торфов и бурых углей обработкой щелочью. Фульвокислоты представляют соединения типа оксикарбоновых кислот с меньшим относительным содержанием углерода и более выраженными кислотными свойствами [14].

Хорошая растворимость фульвокислот по сравнению с гуминовыми кислотами является причиной их более высоких концентраций и распространения в поверхностных водах. Концентрации фульвокислот, как правило, превышает содержание гуминовых кислот в 10 раз и более [31].

[Индекс]

<< Предыдущий | Индекс | Литература | Следующий >>

© Эколайн, 1998

Азот органический

Под "органическим азотом" понимают азот, входящий в состав органических веществ, таких, как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения).

Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток. Концентрация этих соединений определяется биомассой гидробионтов и скоростью указанных процессов. Другим важным источником азотсодержащих органических веществ являются прижизненные их выделения водными организмами. К числу существенных источников азотсодержащих соединений относятся также атмосферные осадки, в которых концентрация азотсодержащих органических веществ близка к наблюдающейся в поверхностных водах. Значительное повышение концентрации этих соединений нередко связано с поступлением в водные объекты промышленных, сельскохозяйственных и хозяйственно-бытовых сточных вод.

На долю органического азота приходится 50-75% общего растворенного в воде азота. Концентрация органического азота подвержена значительным сезонным изменениям с общей тенденцией к увеличению в вегетационный период (1.5-2.0 мг/дм3) и уменьшению в период ледостава (0.2-0.5 мг/дм3). Распределение органического азота по глубине неравномерно - повышенная концентрация наблюдается, как правило, в зоне фотосинтеза и в придонных слоях воды [3], [14], [31], [41].

[Индекс]

Мочевина

Мочевина (карбамид), будучи одним из важных продуктов жизнедеятельности водных организмов, присутствует в природных водах в заметных концентрациях: до 10 - 50 % суммы азотсодержащих органических соединений в пересчете на азот. Значительные количества мочевины поступают в водные объекты с хозяйственно-бытовыми сточными водами, с коллекторными водами, а также с поверхностным стоком в районах использования ее в качестве азотного удобрения. Карбамид может накапливаться в природных водах в результате естественных биохимических процессов как продукт обмена веществ водных организмов, продуцироваться растениями, грибами, бактериями как продукт связывания аммиака, образующегося в процессе диссимиляции белков. Значительное влияние на концентрацию мочевины оказывают внеорганизменные ферментативные процессы. Под действием ферментов происходит распад мононуклеотидов отмерших организмов с образованием пуриновых и пиримидиновых оснований, которые в свою очередь распадаются за счет микробиологических процессов до мочевины и аммиака. Под действием специфического фермента (уреазы) мочевина распадается до аммонийного иона и потребляется водными растительными организмами.

Повышение концентрации мочевины может указывать на загрязнение водного объекта сельскохозяйственными и хозяйственно-бытовыми сточными водами. Оно обычно сопровождается активизацией процессов утилизации мочевины водными организмами и потреблением кислорода, приводящего к ухудшению кислородного режима.

В речных незагрязненных водах концентрация мочевины колеблется в пределах 60-300 мкг/дм3, или в пересчете на азот 30-150 мкг/дм3, в водохранилищах и озерах - от 40 до 250 мкг/дм3. Наиболее высокая концентрация ее обнаруживается вещества пробах, отобранных в летне-осенний период (июль-сентябрь) [6], [14], [31]. ПДКвр — 80 мг/дм3[4].

[Индекс]

Амины

К основным источникам образования и поступления в природные воды аминов следует отнести:

  1. декарбоксилирование при распаде белковых веществ под воздействием декарбоксилаз бактерий и грибов и аминирование;
  2. водоросли;
  3. атмосферные осадки;
  4. сточные воды анилино-красочных предприятий.

Амины присутствуют преимущественно в растворенном и отчасти в сорбированном состоянии. С некоторыми металлами они могут образовывать довольно устойчивые комплексные соединения.

Концентрация аминов в воде рек, водохранилищ, озер, атмосферных осадках колеблется в пределах 10 - 200 мкг/дм3. Более низкое содержание характерно для малопродуктивных водных объектов.

Амины токсичны. Обычно принято считать, что первичные алифатические амины токсичнее вторичных и третичных, диамины токсичнее моноаминов; изомерные алифатические амины более токсичны, чем алифатические амины нормального строения; моноамины с большей вероятностью обладают гепатотоксичностью, а диамины - нефротоксичностью. Наибольшей токсичностью и потенциальной опасностью среди алифатических аминов характеризуются непредельные амины из-за наиболее выраженной у них способности угнетать активность аминооксидаз [6].

Амины, присутствуя в водных объектах, отрицательно влияют на органолептические свойства воды, могут усугублять заморные явления.

ПДКв для различных видов аминов - от 0.01 до 170 мг/дм3 [14].

[Индекс]

Анилин

Анилин относится к ароматическим аминам и представляет собой бесцветную жидкость с характерным запахом.

В поверхностные воды анилин может поступать со сточными водами химических (получение красителей и пестицидов) и фармацевтических предприятий.

Анилин обладаеет способностью окислять гемоглобин в метгемоглобин.

ПДКв — 0.1 мг/дм3 (лимитирующий признак вредности — санитарно-токсикологический), ПДКвр — 0.0001 мг/дм3 [4], [33].

[Индекс]

Уротропин

Гексаметилентетрамин — (CH2)6N4

ПДКв — 0.5 мг/дм3 [4], [33].

[Индекс]

Нитробензол

Нитробензол - бесцветная или зеленовато-желтая маслянистая жидкость с запахом горького миндаля.

Нитробензол токсичен, впитывается через кожу, оказывает сильное действие на центральную нервную систему, нарушает обмен веществ, вызывает заболевания печени, окисляет гемоглобин в метгемоглобин [6].

ПДКв — 0.2 мг/дм3 (лимитирующий признак вредности — санитарно-токсикологический), ПДКвр — 0.01 мг/дм3 [4], [33].

[Индекс]

Сера органическая

Метилмеркаптан

Метилмеркаптан является продуктом метаболизма живых клеток. Он также поступает со стоками предприятий целлюлозной промышленности (0.05 - 0.08 мг/дм3).

В водном растворе метилмеркаптан является слабой кислотой и частично диссоциирует (степень диссоциации зависит от рН среды). При рН =10.5 50% метилмеркаптана находится в ионной форме, при рН =13 происходит полная диссоциация. Метилмеркаптан стабилен менее 12 часов, образует соли — меркаптиды [2], [3].

ПДКв — 0.0002 мг/дм3 (лимитирующий признак вредности — органолептический) [4], [33].

[Индекс]

Диметилсульфид

Диметилсульфид выделяется водорослями (Oedogonium, Ulothrix) в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности (0.05 - 0.08 мг/дм3).

Концентрации диметилсульфида в морях достигает 12-27.10-6 мг/дм3 (повышенные концентрации наблюдаются в местах скопления водорослей).

Диметилсульфид долго не может сохраняться в воде водоемов (стабилен от 3 до 15 суток). Он частично подвергается превращениям при участии водорослей и микроорганизмов, а в основном испаряется в воздух.

В концентрациях 1-10 мкг/дм3 диметилсульфид обладает слабой мутагенной активностью [2].

ПДКв — 0.01 мг/дм3 (лимитирующий показатель вредности — органолептический) [4], [33].

[Индекс]

Диметилдисульфид

Диметилдисульфид образуется в клетках различных представителей флоры и фауны в ходе метаболизма сераорганических соединений, а также может поступать со стоками предприятий целлюлозной промышленности.

ПДКв — 0.04 мг/дм3 [4], [33].

[Индекс]







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.