Понятие числового положительного рядаСтр 1 из 7Следующая ⇒
Ряды для чайников. Примеры решений
Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел, и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания. Рекомендую следующий порядок изучения темы: 1) Ряды для чайников (эта статья) + нахождение суммы ряда.
Понятие числового положительного ряда В общем виде положительный числовой ряд можно записать так: В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто: Будем считать, что ВСЕ слагаемые Пример 1 Записать первые три члена ряда Сначала Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ: Обратите внимание на принципиальное отличие от числовой последовательности, Пример 2 Записать первые три члена ряда Это пример для самостоятельного решения, ответ в конце урока Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде: Пример 3 Записать первые три члена ряда На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: Иногда встречается обратное задание Пример 4 Записать сумму в свёрнутом виде с общим членом ряда А вот пример чуть сложнее для самостоятельного решения: Пример 5 Записать сумму в свёрнутом виде с общим членом ряда Сходимость числовых положительных рядов Одной из ключевых задач теории числовых рядов является исследование ряда на сходимость. При этом возможны два случая: 1) Ряд 2) Ряд В подавляющем большинстве случаев найти сумму ряда затруднительно, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически. Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши, некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда !Для дальнейшего усвоения урока необходимо хорошо понимать, что такое предел и хорошо уметь раскрывать неопределенность вида ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|