Здавалка
Главная | Обратная связь

Основные определения.



Пусть дана бесконечная последовательность функций .

независимой переменной х, имеющих общую область определения D. Ряд

называется функциональным рядом.

Примеры: 1. ;

2. ;

3. .

Для каждого значения функциональный ряд превращается в числовой ряд, сходящийся или расходящийся. Так, первый из примеров - геометрическая прогрессия со знаменателем х, этот ряд сходится при х=1/2 и расходится при х=2.

Определение. Значение , при котором функциональный ряд сходится, называется точкой сходимости функционального ряда. Множество всех точек сходимости функционального ряда называется областью сходимости этого ряда. Область сходимости обозначим .

Так, для первого из приведённых примеров область сходимости - интервал (-1, 1); для второго - ряда Дирихле - область сходимости - полуось х>0; третий ряд абсолютно сходится в любой точке х, так как при любом х справедливо ; следовательно, область сходимости третьего ряда ).

Для каждого мы получаем сходящийся числовой ряд, свой для каждого х, поэтому сумма функционального ряда есть функция , определённая на области . Так, для первого примера, как мы знаем, , т.е. на интервале

(-1, 1); вне этого интервала равенство не имеет места; так, в точке х=2 ряд расходится, а . Сумма второго ряда - знаменитая функция Римана , определённая на полуоси ; эта функция играет важную роль в теории чисел. Сумма третьего ряда, как мы увидим дальше при изучении рядов Фурье, равна функции периода , получающаяся в результате периодического повторения функции , определённой на отрезке , по всей числовой оси.

Коль скоро мы осознали, что сумма функционального ряда - функция, встаёт вопрос о свойствах этой функции. Так, члены ряда могут иметь свойства непрерывности, дифференцируемости, интегрируемости и т.д. Будет ли обладать этими свойствами сумма ряда? То, что это не праздный вопрос, показывает следующий пример. Пусть , , , , …, , …. Ряд состоит из непрерывных членов, найдём его область сходимости и сумму. Частичная сумма ряда . Последовательность при имеет конечный предел только, если (это и есть область сходимости ряда), при этом Таким образом, для ряда, члены которого - непрерывные функции, мы получили разрывную на области сходимости сумму.

Сумма ряда сохраняет хорошие свойства своих членов в том случае, если ряд сходится равномерно.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.