| 
 Функции комплексного переменного (ФКП). Условия Коши-РиманаИзучаемые вопросы: Определение ФКП. Предел и непрерывность. Производная и дифференциал. Необходимое и достаточное условие дифференцируемости. Правила дифференцирования. Регулярность. Гармонические функции. 
 По этой теме Вам также предстоит решить задачу контрольной работы (см. [4]). 2.2.1. Общие замечания Все нужные определения и примеры приведены в Учебном пособии. При изучении материала обратите внимание на схожесть понятий для ФКП и функций вещественного переменного. Различие в понятиях бесконечности на вещественной оси и бесконечно удалённой точки (БУТ) на комплексной плоскости основано на следующем. Понятие БУТ вводится по аналогии с расширением вещественной оси, к которой добавляют две «бесконечные» точки:  
 Необходимыми и достаточными условиями дифференцируемости ФКП являются условия Коши-Римана, которые совпадают с уравнениями (1). Следует запомнить все четыре выражения для производной ФКП через частные производные её вещественной и мнимой частей: 
 Важным в ТФКП является понятие регулярной функции: функция однозначная и дифференцируемая в каждой точке некоторой области называется регулярной в этой области. Из этого определения следует, что для регулярной функции выполняются условия Коши-Римана. Функция, регулярная в окрестности некоторой точки, называется регулярной в этой точке. Оказывается, что функция, регулярная в точке, имеет в этой точке производные любых порядков. Функции, удовлетворяющие уравнению Лапласа 
 называются гармоническими функциями. Уравнение (3) имеет большое значение в электродинамике, описывая потенциал постоянного электрического поля в пустоте. 
 Вопросы для самопроверки по теме 2.2 1. В чём заключаются условия Коши-Римана? 2. Напишите четыре уравнения для вычисления производной ФКП. 3. Что означает регулярность функции? 4. Какие функции называются гармоническими? 
 ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.  |