Здавалка
Главная | Обратная связь

Метод розв'язування задачі дрібно лінійного програмування у загальному вигляді.



Економічна і математична постановка задачі

Розв'язуючи економічні задачі, часто за критерій оптимальності беруть показники рентабельності, продуктивності праці тощо, які математично подаються дробово-лінійними функціями. Загальну економіко-математичну модель у цьому разі записують так:

за умов

Припускають, що знаменник цільової функції в області допус­тимих розв'язків системи обмежень не дорівнює нулю.

Алгоритм розв'язування задачі дробово-лінійного програму­вання передбачає зведення її до задачі лінійного програмування. Щоб виконати таке зведення, позначимо

зробимо заміну змінних

і запишемо економіко-математичну модель:

за умов

Дістали задачу лінійного програмування, яку можна розв'язати симплексним методом. Нехай оптимальний план

Оптимальні значення х0j знайдемо за формулою

Графічний метод

У разі, коли задача дробово-лінійного програмування містить лише дві змінні, для її розв’язування зручно скористатися графіч­ним методом.

Нехай маємо таку задачу:

(7.4)

за умов:

(7.5)

, (7.6)

Спочатку, як і для звичайної задачі лінійного програмування будуємо геометричне місце точок системи нерівностей (7.5), що визначає деякий багатокутник допустимих розв’язків.

Допустимо, що , і цільова функція набуває деякого значення:

.

Після елементарних перетворень дістанемо:

або . (7.7)

Останнє рівняння описує пряму, що обертається навколо початку системи координат залежно від зміни значень х1 та х2.

Розглянемо кутовий коефіцієнт нахилу прямої (7.7), що виражає цільову функцію:

. (7.8)

Отже, кутовий коефіцієнт являє собою функцію від Z. Для визначення умов зростання (спадання) функції (7.8) дослідимо зміну знака її похідної:

(7.9)

Використовуючи формулу (7.9), можна встановити правила пошуку максимального (мінімального) значення цільової функції:

1.) якщо ,

то функція (7.8) є зростаючою, і за збільшення значення Z (значення цільової функ­ції) кутовий коефіцієнт нахилу прямої (7.7) також збільшується. Тобто у разі, якщо , для відшукання точки максимуму необхідно повертати пряму, що описує цільову функцію, навколо початку системи координат у напрямку проти годинникової стрілки;

2.)якщо , то функція (7.8) є спадною і за збільшення значення Z (значення цільової функції) кутовий коефіцієнт нахилу прямої (7.7) буде зменшуватись. Тому у разі, якщо , для відшукання точки максимуму необхідно повертати пряму, що описує цільову функцію, навколо почат­ку системи координат у напрямку за годинниковою стрілкою.

При розв’язуванні задачі дробово-лінійного програмування графічним методом можливі такі випадки:

-багатокутник розв’язків задачі обмежений і максимальне та мінімальне значення досягаються у його кутових точках;

-багатокутник розв’язків задачі необмежений, однак існують кутові точки, в яких досягаються максимальне та мінімальне значення цільової функції;

-багатокутник розв’язків задачі необмежений і досягається лише один із екстремумів;

-багатокутник розв’язків задачі необмежений, точки екстремумів визначити неможливо.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.