Теоретическое введение
При объединении атомов в кристаллическое тело структура энергетических уровней электронов претерпевает важные изменения. Эти изменения почти не затрагивают наиболее глубокие уровни, образующие внутренние, заполненные оболочки. Зато наружные уровни коренным образом перестраиваются. Указанное различие связано с разным пространственным распределением электронов, находящихся на глубоко лежащих и на верхних энергетических уровнях. Атомы в кристалле тесно «прижаты» друг к другу. Волновые функции наружных электронов в существенной мере перекрываются, что приводит к обобществлению этих электронов – они теперь принадлежат не отдельным атомам, а всему кристаллу. В то же время волновые функции внутренних электронов друг с другом практически не перекрываются. Положение этих уровней в кристалле мало отличается от их положения у изолированных атомов.
Ширина зон определяется величиной связи между атомами и не зависит от числа атомов в кристалле. В то же время количество уровней в зоне равно числу атомов и описывается цифрами с десятком или даже с несколькими десятками нулей. Таким образом, расстояние между уровнями оказывается столь незначительным, что говорить о положении отдельных уровней в зоне не имеет смысла. В то же время количество уровней сохраняет вполне ясный смысл, так как при сближении атомов число возможных состояний (а, следовательно, и число электронов, которые могут занять эти состояния) не изменяется. Электропроводность твердых тел определяется распределением электронов по уровням (рис.16.2). В металлах электроны лишь частично заполняют последнюю из занимаемых зон (зона проводимости – ЗП), и в ней имеются свободные состояния. В присутствии электрического поля электроны проводимости могут занимать эти состояния, и металл проводит электрический ток. В изоляторах (диэлектриках) электроны доверху заполняют последнюю из занятых зон (валентную зону – ВЗ). Следующая разрешенная зона (зона проводимости) не содержит электронов. В присутствии поля ни один из электронов не может изменить своего состояния, так как нет свободных энергетических состояний. Твердое тело будет не проводящим при температуре, равной Т=0 К. Однако при отличной от нуля температуре существует конечная вероятность того, что некоторые электроны будут за счет теплового возбуждения переброшены через энергетическую щель (Еg – ширина запрещенной зоны – ЗЗ) из валентной зоны в зону проводимости. При этом остаются незанятые уровни в валентной зоне. Термически возбужденные электроны способны переносить ток (переходить на свободные энергетические состояния в зоне проводимости). В валентной зоне проводимость становится возможной из-за появления свободных состояний – дырок, которые ведут себя как свободные носители положительного заряда: ближайший к дырке электрон валентной зоны, попадая в неё, оставляет при этом новую дырку, которую заполнит другой электрон валентной зоны и т.д. Дырка валентной зоны будет перемещаться по кристаллу в направлении, противоположном направлению движения электронов валентной зоны. Таким образом, валентная зона будет зоной дырочной проводимости. Приведут ли тепловые перебросы электронов из валентной зоны в зону проводимости к заметной проводимости или нет, существенно зависит от ширины запрещенной зоны Еg, поскольку число электронов, переброшенных в зону проводимости при температуре Т, пропорционально величине Твердые тела, которые являются диэлектриками при Т=0 К, но имеют такую ширину запрещенной зоны Еg, что тепловое возбуждение при температурах ниже точки плавления может обуславливать заметную проводимость, называются полупроводниками. Ясно, что не существует четкого различия между полупроводниками и диэлектриками; грубо говоря, в наиболее важных полупроводниках Еg обычно меньше 2 эВ, а часто составляет лишь несколько десятых электрон-вольта. Типичные удельные сопротивления полупроводников при комнатной температуре лежат в интервале между 10-5 и 107 Ом∙м (в отличие от металлов, где ρ=10-8 Ом∙м, а также и от хороших диэлектриков, у которых ρ может достигать до 1020 Ом∙м). Самой важной характеристикой любого полупроводника при температуре Т является число nc электронов в зоне проводимости, приходящееся на единицу объема, и число дырок pv на единицу объема в валентной зоне. Эти величины определяются произведением числа уровней, имеющихся в единице объема полупроводника, на вероятность их заполнения. Вероятность заполнения энергетических уровней выражается функцией распределения Ферми f(E). Для анализа электронных состояний необходимо использовать квантовую статистику
где Е – энергии уровней; μ – химический потенциал. Часто химический потенциал полупроводников называется «уровнем Ферми» (μ=EF) . Однако, это неудачная терминология. Обычное определение уровня Ферми – энергия, ниже которой при Т=0 К в металле электронные уровни в зоне проводимости заполнены, а выше – свободны (не заполнены). В полупроводниках химический потенциал μ лежит примерно в середине запрещенной зоны, поэтому ни один электронный уровень не совпадает с химическим потенциалом. Обозначим через Ес энергию дна зоны проводимости, а через Еv – энергию потолка валентной зоны (рис. 16.3). В полупроводниках даже при весьма малой ширине запрещенной зоны Еg=Ес–Еv обычно выполняется условие
Так что число электронов nc в зоне проводимости, приходящееся на единицу объема, будет равно
где А(Т) – число уровней, имеющихся в зоне проводимости в единице объема полупроводника. Вероятность появления дырки в валентной зоне определяется разностью:
поскольку
Заметим, что А(Т) и В(Т) – медленно меняющиеся функции температуры по сравнению с экспонентами в (16.4) и (16.5). Если полупроводник является настолько чистым, что примеси вносят пренебрежимо малый вклад в концентрацию носителей, то мы имеем дело с собственным полупроводником. В нем электроны могут попасть в зону проводимости, только покинув заполненные ранее уровни в валентной зоне, оставив вместо себя там дырки. Таким образом, число электронов в зоне проводимости равно числу дырок в валентной зоне nc(T)=pv(T)=n. Так что из (16.4) и (16.5) можно записать
Найдем теперь электропроводность полупроводника. В присутствии поля большая часть электронов в зоне проводимости начинает двигаться в сторону, противоположную полю. Средняя величина скорости электронов перестает быть равной нулю и направлена вдоль поля. При этом вплоть до самых сильных полей (практически до пробоя) выполняется формула
где
где j – плотность электрического тока,
где предэкспоненциальный множитель заменен константой D. Измерим электропроводность σ как функцию температуры и изобразим результаты на графике в полулогарифмическом масштабе:
Формула (16.9) показывает, что график должен иметь вид прямой линии с наклоном Еg/2k. Наклон прямой позволяет, таким образом, определить ширину запрещенной зоны Еg. Приведенные соображения верны лишь постольку, поскольку электропроводность полупроводника определяется переходами электронов из валентной зоны в зону проводимости, то есть пока основной вклад в электропроводность вносит собственная проводимость полупроводника. При небольших температурах это обычно не имеет места, так как полупроводники всегда содержат примеси.
При тепловом возбуждении гораздо легче вызвать переход электрона в зону проводимости с донорного уровня или на акцепторный уровень из валентной зоны, чем переход через всю запрещенную зону из валентной зоны в зону проводимости. Поэтому при низких температурах именно примеси определяют температурный ход электропроводности полупроводника. На рис. 16.5 представлена зависимость
Здесь ![]() ![]() ![]() Итак, наиболее яркая особенность полупроводника состоит в том, что у них в отличие от металлов электросопротивление падает с ростом температуры. В металлах температурный коэффициент удельного сопротивления
положителен, и его можно считать приближенно постоянным, если интервал изменения температуры достаточно мал. Так, если
В классической электронной теории металлов предполагается, что движение электронов подчиняется законам классической механики Ньютона. Электроны проводимости рассматриваются как электронный газ, подобный идеальному газу в молекулярной физике. Предполагается, что причина электрического сопротивления заключается в соударениях электронов с положительными ионами решетки металла. В действительности же электроны проводимости подчиняются законам квантовой механики, и для них справедлива квантовая статистика – их распределение по энергиям определяется функцией Ферми (16.1). И оказывается, что причина сопротивления чистых металлов – взаимодействие электронов с колебаниями решетки. В квантовой теории кристаллических твердых тел кванты колебаний решетки были названы фононами. Электросопротивление чистых металлов возникает из-за столкновений электронов с фононами. Расчеты показывают, что при высоких температурах (Т>θD) ρ~Т, что и наблюдается экспериментально. Здесь θD – дебаевская температура металла. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|