Теоретическое введение
Структура энергетических зон в полупроводнике описана в лабораторной работе 3-16. Там же объяснено, как возникает n– и p–тип проводимости в примесных полупроводниках. Электронно-дырочный переход (р-n–переход)– это переходный слой между двумя областями полупроводника с разным типом проводимости (p– и n–типа). Р-n–переход имеет большое практическое значение, являясь основой многих полупроводниковых приборов, в частности полупроводникового диода и транзистора. Рассмотрим физические процессы, происходящие в p-n–переходе. Пусть донорный полупроводник (полупроводник n–типа) приводится в контакт с акцепторным полупроводником (полупроводником p–типа). Из п–области с высокой концентрацией свободных электронов происходит их диффузия в р–область, где эта концентрация очень мала. Имеющиеся там в избытке дырки легко «захватывают» пришедшие свободные электроны (т.е. эти электроны занимают вакантные места в ковалентных связях между атомами кристалла и тем самым перестают быть свободными). Таким образом, происходит рекомбинация – попарное исчезновение положительного (дырки) и отрицательного (свободного электрона) носителей заряда. Рекомбинация приводит к тому, что с обеих сторон поверхности раздела образуется тонкий слой, лишенный основных носителей заряда и поэтому близкий по свойствам к диэлектрику. Кроме того, уход электронов из п–области обусловливает возникновение там избыточного положительного заряда, а их появление в р–области – возникновение нескомпенсированного отрицательного заряда. Следовательно, р-п–переход можно уподобить микроскопическому заряженному конденсатору, который создает внутреннее электрическое поле напряженностью Прямое включение p-n–перехода («+» к р–области, «–» – к п–области) создает внешнее поле, направленное противоположно внутреннему полю (рис.18.1,б). При этом движение электронов в n–области и дырок в p–области направлено к границе p-n–перехода навстречу друг к другу. Они рекомбинируют с неосновными носителями в p-n–переходе, и толщина контактного слоя уменьшается. При этом высота потенциального барьера уменьшается, что благоприятствует движению основных носителей заряда через р-п–переход. С увеличением прямого напряжения Uпр сопротивление перехода уменьшается, и прямой ток Iпр быстро возрастает (прямая ветвь вольтамперной характеристики, рис. 18.2).
При прямом включении через тонкий р-n–переход (где возможно пренебречь рекомби‑
где js– плотность тока насыщения; U – напряжение на р-n–переходе. Плотность тока jпр будет возрастать по экспоненте в зависимости от внешнего напряжения U. Если теперь осуществить включение обратной полярности, то потенциальный барьер возрастает, однако обратный ток не падает до нуля, его плотность
Если обратное напряжение Это справедливо, однако, до тех пор пока обратное напряжение не достигнет некоторого значения, выше которого начинается пробой запорного слоя.
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|