Здавалка
Главная | Обратная связь

II. Максимальная начальная скорость (максимальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой w.



III. Для каждого металла существует красная граница фотоэффекта, т.е. минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

В 1905 г. А. Эйнштейн показал, что все закономерности фотоэффекта легко объяснить, если предположить, что свет поглощается такими же порциями (кванта­ми), какими он, по предположению Планка, испускается. Энергия кванта, по предпо­ложению Эйнштейна, усваивается электроном целиком. Часть этой энергии, равная работе выхода A, затрачивается на то, чтобы электрон мог покинуть тело. Остаток энергии переходит в кинетическую энергию электрона. По закону сохранения энергии

. (1)
Уравнение (1) называется уравнением Эйнштейна.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (1) следует, что максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты падающего излучения и не зависит от интенсивности последнего. В случае, когда работа выхода A превышает энергию кванта , электроны не могут покинуть металл. Следовательно, для возникновения фотоэффекта необходимо выполнения условия или

. (2)
Частота называется красной границей фотоэффекта.

Число высвобождаемых фотоэлектронов должно быть пропорционально числу падающих на поверхность квантов света. Вместе с тем энергетическая освещенность определяется количеством квантов света, падающих на единицу поверхности в единицу времени. В соответствии с этим ток насыщения должен быть пропорционален освещенности поверхности

. (3)
Эта зависимость также подтверждается экспериментально. Отметим, что лишь малая часть квантов передает свою энергию фотоэлектронам. Энергия остальных кантов затрачивается на нагревание вещества.

Фотоны. Чтобы объяснить распределение энергии в спектре равновесного теплового излучения, достаточно допустить, что свет только испускается порциями . Для объяснения фотоэффекта достаточно предположить, что свет поглощается такими же порциями. Эйнштейн пошел значительно дальше. Он выдвинул гипотезу, что свет и распространяется в виде дискретных частиц. Впоследствии эти частицы получили название фотонов.

Существование фотонов подтверждено экспериментально в опыте Боте. Он показал, что энергия рентгеновских лучей распространяется в виде порций в ту или иную сторону (а не во все стороны одновременно как для электромагнитной волны). Опыт был выполнен при помощи двух счетчиков (рис.), достаточно чувствительных для того, чтобы зарегистрировать действие одного рентгеновского кванта, и достаточно быстро отмечающих его появление. Тоненькая металлическая пленка A, освещаемая сбоку рентгеновскими лучами R, сама становилась источником рентгеновских лучей (рентгеновская флуоресценция). Два счетчика C1 и C2 расположены симметрично. Попадание рентгеновского излучения в каждый из них вызывает немедленное срабатывание, что фиксируется на самописце. Опыт совершенно отчетливо обнаружил беспорядочность срабатываний счетчиков, т.е. доказал, что из A летят кванты то в одну, то в другую сторону.

Так как фотон движется со скоростью света в любой инерциальной системе отсчета, то он согласно принципам теории относительности не обладает массой покоя. Энергия фотона определяется его частотой

.
Для частиц, не обладающих массой покоя, импульс связан с энергией соотношением . Для фотона получаем

.

Поскольку фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота w), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади падает N фотонов, то при коэффициенте отражения r света от поверхности rN фотонов отразится, а (1-r)N – поглотится. Каждый поглощенный фотон передает поверхности импульс , а каждый отраженный – (при отражении импульс фотона меняет направление). Поэтому давление света

.
есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т.е. энергетической освещенности поверхности, а – объемная плотность энергии излучения. Поэтому

. (4)







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.