Здавалка
Главная | Обратная связь

Тема №4 Комбинаторика и бином Ньютона



Правило произведения. Пусть элемент х1 строки (х1, х2, …, хk) можно выбрать n1 способами; после каждого выбора х1 элемент х2 можно выбрать n2 способами; после выборов х1 и х2 элемент х3 можно выбрать n3 способами и т.д.; после выборов х1, х2, …, хk-1 элемент хk можно выбрать nk способами. Тогда строку (х1, х2, …, хk) можно образовать n1 × n2 × … × nk способами.

Пример 1. Сколькими способами можно выбрать четырехзначное число, все цифры которого различны?

Решение. Каждому четырехзначному числу можно поставить во взаимно однозначное соответствие строку (х1, х2, х3, х4), где х1, х2, х3, х4 – соответственно 1, 2, 3 и 4-я цифры. Элемент х1 этой строки можно выбрать 9 способами (любую из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9); элемент х2 можно выбрать также 9 способами (теперь можно использовать и цифру 0, но первую выбранную цифру повторить нельзя); элемент х3 можно выбрать 8 способами (уже выбранные первые две цифры повторить нельзя); наконец, элемент х4 можно выбрать 7 способами. Согласно правилу произведения искомое число способов выбора четырехзначного числа с различными цифрами равно: 9 × 9 × 8 × 7 = 4536.

Размещения с повторениями. Пусть Х – множество, состоящее из n элементов (n-членное множество). Тогда любая строка длиной k, составленная из элементов множества Х, называется размещением с повторениями из n элементов по k.

Число всех размещений с повторениями из n элементов по k равно nk.

Пример 2. Сколькими способами можно выбрать четырехзначное число, в десятичной записи которого нет нуля?

Решение. Четырехзначные числа указанного вида можно рассматривать как строки длиной 4, составленные из элементов множества Х = {1, 2, 3, 4, 5, 6, 7, 8, 9}, т.е. как размещения с повторениями из 9 элементов по 4. Следовательно, искомое число способов равно: 94 = 6561.

Размещения без повторений. Перестановки. Пусть Х по-прежнему n-членное множество. Тогда любая строка длиной k, составленная из различных элементов множества Х, называется размещением без повторений из n элементов по k. Число всех таких размещений обозначается и равно:

.

В случае, когда k = n, размещения без повторений называются перестановками из n элементов. Число всех перестановок из n элементов обозначается Pn и равно:

Pn = = n!.

Пример 3. 10 спортсменов разыгрывают одну золотую, одну серебряную и одну бронзовую медали. Сколькими способами эти медали могут быть распределены между спортсменами?

Решение. Предположим, что спортсмены пронумерованы числами от 1 до 10 и х1, х2, х3 – номера спортсменов, получивших золотую, серебряную и бронзовую медали. Каждому такому распределению медалей соответствует строка (х1, х2, х3 ), состоящая из различных чисел (номеров спортсменов). Обратно каждой строке (х1, х2, х3) соответствует способ распределения медалей. Следовательно, число способов распределения медалей равно числу размещений без повторений из 10 элементов по 3, т.е.

Сочетания и бином Ньютона. Всякое k-членное подмножество n-членного множества называется сочетанием из n элементов по k.

Число различных сочетаний из n элементов по k обозначается . Справедлива формула

.

Числа , , ,…, , являются коэффициентами в разложении бинома Ньютона:

(a + b)n = a0 bn + a bn-1 + … + an b0.

Пример 4. Сколькими способами из 10 спортсменов можно отобрать команду из 6 человек?

Решение. Очевидно, команда из 6 человек является 6-членным подмножеством 10-членного множества, т.е. сочетанием из 10 элементов по 6. Следовательно, искомое число способов равно

Размещения данного состава. Полиномиальная формула. Размещением данного состава (k1, k2,…, km) из элементов m-членного множества Х = {x1, x2 ,…, xm} называется всякая строка длинной k1 + k2 + … + km = n, составленная из элементов множества Х, так, что элемент х1 повторяется k1 раз, элемент x2 – k2 раз и т.д., элемент xm – km раз. Например, если Х= {x1, x2 ,x3}, то (x1, x2 , x2, х1, х1) есть размещение состава (3,2,0).

Количество различных размещений заданного состава (k1, k2,…, km) обозначается А(k1, k2,…, km) и равно:

.

Следующая формула, обобщающая формулу бинома Ньютона, называется полиномиальной:

,

где суммирование проводится по всевозможным наборам целых неотрицательных чисел k1, k2,…, km , для которых k1 + k2 + … + km = n.

Пример 5. Сколькими способами можно поставить на книжной полке 3 экземпляра учебника по алгебре, 2 экземпляра учебника по геометрии и один экземпляр учебника по математическому анализу?

Решение. Очевидно, всякой расстановке указанных учебников взаимно однозначно соответствует строка длиной 3 + 2 + 1 = 6 состава (3, 2,1). Следовательно, искомое число способов равно числу размещений состава (3, 2, 1) .т.е.

Пример 6. Вычислите (1 + х + х2)3.

Решение. По полиномиальной формуле имеем:

,

где суммирование производится по всем наборам неотрицательных целых чисел k1, k2, k3, для которых k1 + k2 + k3 = 3. Выпишем все такие наборы: (0,0,3), (0,3,0), (3,0,0), (0,1,2), (1,2,0), (2,0,1), (1,0,2), (0,2,1), (2,1,0), (1,1,1). Теперь находим:







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.