Здавалка
Главная | Обратная связь

Етапи перетравлювання ліпідів



Відділ травної системи Процеси перетравлювання ліпідів
Шлунок(початок перетравлювання) Розщеплюється незначна кількість ліпідів із-за відсутності необхідних умов: ліпаза малоактивна при рН 1,5 – 2 (оптимум дії при рН = 5,5 – 7,5), здатна розщеплювати лише емульговані жири. Частковому гідролізу піддаються лише емульговані жири молока. У немовлят рН шлункового соку становить близько 5, що сприяє перетравлюванню емульгованих жирів молока ліпазою, що міститься в їх шлунку.
Тонка кишка (верхні відділи) – основні процеси перетравлювання ліпідів.     Схема утворення емульсії: а – молекула ПАР; b – орієнтація ПАР на межі поділу фаз олія – вода (гідрофобна частина ПАР спрямована до масла, а гідрофільна частина молекули спрямована до води) 1. Емульгування жирів; 2. Гідролітичне розщеплення жирів; 3. Міцелоутворення жирів. Умови: a Ферменти ліпази, фосфоліпази, естерази; a Фактори, що сприяють емульгуванню і міцелоутворення (жовчні кислоти, жирні кислоти, моногліцериди, фосфоліпіди). Після надходження хімусу з шлунку у дванадцятипалу кишку під впливом вугільної кислоти (виділяється внаслідок нейтралізації соляної кислоти, що потрапила з шлунку гідрокарбонатами панкреатичного соку) відбувається активне перемішування харчової маси і часткове емульгування жирів. Цьому сприяють солі жовчних кислот (мила), а також жовчні кислоти, які разом із жовчю виділяються у дванадцятипалу кишку. Жовчні кислоти синтезуються у печінці з холестерину, є похідними холанової кислоти, виділяються з жовчю в кишки у сполуках з гліцином і таурином. Парні жовчні кислоти (складаються з двох компонентів є сполуками жовчних кислот з таурином і гліцином. Зальна кількість жовчних кислот – 3-5г, синтезується цілодобово 0,5 – 0,8г. Роль жовчних кислот у забезпеченні процесу травлення: · Емульгування жирів (одночасно існує дві фази – масляна емульсія і міцелярний розчин, які утворюються глікохолати та таурохолати натрію). Під час формування жирової емульсії гідрофобні залишки солей жовчних кислот адсорбуються на поверхні жирових часточок і значно зменшується поверхневий натяг, що сприяє емульгуванню ліпідів та стабілізації утвореної емульсії. На емульговані жири інтенсивно діють ліполітичні ферменти. · Участь у процесах ресорбції жирних кислот та інших компонентів розщеплення ліпідів. · Регуляція синтезу холестерину в печінці. · Посилення перистальтики кишок. Ферментативний гідроліз тригліцеридів проходить за участю ферментів панкреатичної ліпази та кишкової ліпази. Активність кишкової ліпази значно менша, ніж панкреатичної. Тригліцерид ® гліцерин + жирні кислоти (схема гідролізу жирів)
Розщеплення фосфоліпідів відбувається за участю ферментів фосфоліпаз, які виділяються у складі панкреатичного соку. Фосфоліпази А1; А2; С; Д, кожна з яких гідролізує певний складноефірний зв’язок у молекулах гліцерофосфоліпідів. Гідроліз фосфатидихоліну (лецитину): 1 стадія (від молекули лецетину відщеплюється молекула жирної кислоти, утворюється лізолецитин), каталізатор – фосфоліпаза А2: Лецитин ® Лізолецитин(дуже токсична сполука) 2 стадія ( відщеплення другої молекули жирної кислоти від молекули лізолецитину і утворення α-гліцерофосфохоліну), каталізатор – фосфоліпаза А1: Лізолецитин ® α-гліцерофосфохолін 3 стадія (відщеплення молекули холіну від молекули α-гліцерофосфохоліну і утворення α-гліцерофосфату), каталізатор – фосфоліпаза Д: α-гліцерофосфохолін ® α-гліцерофосфат + Холін 4 стадія (відщеплення молекули фосфорної кислоти від молекули α-гліцерофосфату і утворення гліцерину), каталізатор – фосфоліпазаС: α-гліцерофосфат ® Гліцерин + Фосфорна кислота Кінцевими продуктами розщеплення лецитину є гліцерин, жирні кислоти, холін і фосфорна кислота.
Тонка кишка (верхні відділи) – основні процеси перетравлювання ліпідів. Розщеплення стеридів (ефіри холестерину): Фермент панкреатичної і кишкового соку – холестеринестераза Ефір холестерину ® Холестерин + Жирна кислота
Тонка кишка (проксимальна частина)–всмоктування продуктів розщеплення жирів і ре синтез їх у стінках кишок 1. Вільно всмоктуються жирні кислоти з коротким вуглецевим ланцюгом (<С10) і гліцерин, які добре розчиннні у воді. 2. Всмоктування жирних кислот з довгим вуглецевим і моногліцеридів проходить за участю жовчних кислот і фосфоліпідів, з якими вони утворюють міцели (міцелярні розчини). Міцели: у гідрофобному ядрі – жирні кислоти, гліцериди, холестерин і деякі інші ліпіди, а зовнішня гідрофільна оболонка – жовчні кислоти і фосфоліпіди. Міцели майже в 100 разів менші, ніж краплі емульгованого жиру. Жовчні кислоти циркулюють між печінкою і кишками, щодобово вони здійснюють 5-6 циклів. Фосфорна кислота всмоктується стінками кишок в основному у вигляді солей калію або натрію. Азотисті основи гліцерофосфоліпідів – холін, етаноламін та інші всмоктуються в тонкій кишці у своїх активних формах. В епітеліальних клітинах з продуктів всмоктування синтезуються ліпіди, специфічні для даного організму. Процес синтезу жирів обмежений (частина чужорідних жирів відкладається в жировому депо в незмінному вигляді.

Ресинтезовані ліпіди, які всмокталися з порожнини кишок, і деякі продукти розщеплення жирів (жирні кислоти), які не були використані в ресинтезі, здатні сполучатися з білком крові і утворювати транспортні форми ліпідів.

 

 

 


Транспорт ліпідів: Утворення комплексів білків з ліпідами – ліпопротеїдів – сприяє розчинності і стабілізації ліпідів та забезпечує їх транспорт до різних органів і тканин організму.

8 Жири (триацилгліцерини) — найбільш важливий резерв енергії в організмі тварин. Вони зберігаються в основному в клітинах жирової тканини. Там же вони беруть участь в процесах утворення та деградації. 8 Жирні кислоти, які необхідні для синтезу жирів (ліпогенез), у складі триацилглицеринів переносяться з печінки та кишечнику у вигляді ліпопротеїнових комплексів та хіломікронів). Ліпопротеїн-ліпаза, що знаходиться на поверхні клітин кровоносних капілярів, відщеплює від цих ліпопротеїдів жирні кислоти. 8 Деградація жирів (ліполіз) каталізується ліпазою. Рівень вільних жирних кислот, що надходять з жирової тканини, залежить від активності ліпази — фермент регулює рівень жирних кислот у плазмі.

8 Жирні кислоти з жирової тканини транспортуються в плазму крові в неестерифікованій формі. При цьому розчинними є тільки жирні кислоти з малою кількістю атомів карбону, а жирні кислоти з більш довгими ланцюгами, менш розчинні у воді, переносяться в комплексі з альбуміном.

Деградація жирних кислот в печінці(на схемі зліва):

8Жирні кислоти надходять з плазми крові до тканин; де з них синтезуються жири або за рахунок окислення надходить енергія. Особливо інтенсивно відбувається метаболізм жирних кислот в клітинах печінки (гепатоцитах).

8Найбільш важним процесом деградації жирних кислот є β-окислення в мітохондріях. При цьому жирні кислоти спочатку активуються в цитоплазмі, приєднуючись до коферменту А. Потім вони за допомогою транспортної системи попадають в мітохондріальний матрикс, де руйнуються в результаті β-окислення до ацетил-КоА. Утворені ацетильні залишки повністю окислюються до СО2 в цитратному циклі з вивільненням енергії у вигляді АТФ (АТР).

8Якщо кількість утвореного ацетил-КоА перевищує енергетичну потребу гепатоцитів, що спостерігається при високому вмісту жирних кислот в плазмі крові (типові випадки — голодування та цукровий діабет), то в гепатоцитах синтезуються кетонові тіла, що забезпечують енергією вже інші тканини.

Синтез жирних кислот в печінці(на схемі праворуч):

8Біосинтез жирних кислот відбувається в цитоплазмі, в основному в печінці, жировій тканині, нирках, легенях і молочних залозах. Головним джерелом атомів карбону є глюкоза, проте можливі інші попередники ацетил-КоА, наприклад, амінокислоти.

8Перша стадія — карбоксилювання ацетил-КоА з утворенням малоніл-СоА — каталізується ацетил-КоА-карбоксилазою, ключевим ферментом біосинтезу жирних кислот. Утворення довголанцюгових жирних кислот здійснюється синтазою жирних кислот. Виходячи з молекули ацетил-КоА під дією цього поліфункціонального ферменту, ланцюг подовжується (процес включає сім реакцій) шляхом додавання малонільних груп і відщеплення СО2 (в кожній реакції) з утворенням пальмітату. Отже, в результаті кожної реакції молекула збільшується на два вуглецевих атоми. Як відновник використовується НАДФН + Н+, утворений в гексозомонофосфатному шляху або в реакціях, що каталізується ізоцитратдегідрогеназою і «малатферментом».

8Подовження ланцюга жирної кислоти при синтезі жирних кислот закінчується на C16, тобто на пальмітиновій кислоті. В наступних реакціях пальмітат використовується в якості попередника для одержання ненасичених або більш довголанцюгових жирних кислот.

8Подальший біосинтез жирів відбувається за участю активованих жирних кислот (ацил-КоА) і 3-глицерофосфату. Для забезпечення інших тканин жири в гепацитах упаковуються у ліпопротеїнові комплекси і надходять у кров.

Біосинтез ліпідів 8 Біосинтез тригліцеридів проходить у різних органах і тканинах організму при наявності двох вихідних сполук – активного гліцерину (гліцеро-3-фосфату) та активних жирних кислот (ацетил КоА). 8 Біосинтез гліцерину відбувається з відновленням діоксиацетонфосфоату – проміжного продукту обміну вуглеводів. 8 В біосинтезі жирних кислот важливу роль відіграють ацетил-КоА, малоніл-КоА, НАДФ·Н + Н+, іони натрію, магнію, гідрокарбонат-іони, а також складний полі ферментний комплекс синтетаза жирних кислот. 8 Холестерин синтезується з ацетил КоА, джерелом якого є оцтова кислота, ацетон, оцтовий альдегід, ацето-оцтова кислота та інші сполуки, які утворюються під час метаболічних реакцій.
Ацетил-СоА як попередник ліпідів

Схема перетворення вуглеводів на ліпіди

Вуглеводи                
               
Глюкоза Гліколіз Гліцеринальдегідофосфат Фосфогліцеринова кислота
Ліпіди Діоксіацетонмонофосфат Піровиноградна кислота
Гліцерин + Вищі жирні кислоти Гліцерофосфат Ацетил-КоА
  ЦТК

 

Висновки: Ä Процеси обміну білків, ліпідів, вуглеводів в організмі взаємопов’язані. Ä Спільним метаболітом, який використовується в процесах взаємоперетворення, є піровиноградна кислота. Ä Піровиноградна кислота перетворюється в ацетил-КоА, який перетворюється в жирні кислоти, які під час взаємодії з гліцерином утворюють жири. Ä Внаслідок карбоксилювання піровиноградної кислоти утворюється щавлевооцтова кислота, а далі вона може утворювати дикарбонові амінокислоти – аспарагінову і глутамінову. Ці амінокислоти в реакціях переамінування сприяють біосинтезу всіх інших замінних амінокислот. Ä Піровиноградна кислота здатна відновлюватись до молочної кислоти, яка використовується в процесах синтезу вуглеводів у тканинах організму. Ä Оцтова кислота виступає у вигляді активованої форми – ацетилкоферменту А (ацетил-КоА), який виконує роль центральної проміжної ланки, через яку відбуваються процеси окислювального розпаду різних сполук і з стадії якої беруть початок численні синтетичні реакції в клітині. Ä Цикл трикарбонових кислот (ЦТК) є тією стадією, на якій сходяться всі види обміну речовин, втрачаючи свою специфіку. Саме в цьому циклі відбувається повне об’єднання обміну білків, вуглеводів і ліпідів у єдиний процес і саме звідси починаються взаємні перетворення цих речовин.
Вуглеводи Жири Білки
Гліколіз   Гідроліз  
β-окислення жирних кислот  
Піровиноградна кислота Амінокислоти  
   
Окислювальне декарбоксилювання β-кетокислоти  
Ацетилхолін Синтез жирних кислот   Обмін амінокислот
   
Ацетил-КоА    
Стероїди    
  Цикл Трикарбонових кислот    
     
  СО2 + Н2О    
         






©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.