Здавалка
Главная | Обратная связь

Принцип Гюйгенса-Френеля



Дифракцією називається сукупність явищ, що спостерігаються при поширенні світла в середовищі з різкими неоднорідностями (поблизу границь непрозорих або прозорих тіл, через малі отвори) і які пов’язані із зміною напрямку поширення світлових хвиль (порівняно з напрямком, передбаченим геометричною оптикою).

Дифракція, зокрема, приводить до огинання світловими хвилями перешкод і проникнення світла в область геометричної тіні.

Явище дифракції пояснюється за допомогою принципу Гюйгенса: кожна точка, до якої доходить хвиля, служить джерелом вторинних хвиль, а обвідна цих хвиль дає положення хвильового фронту в наступний момент часу.

Принцип Гюйгенса – суто геометричний спосіб побудови хвильових поверхонь – розв’язує лише задачу про напрямок поширення хвильового фронту, але не зачіпає, по суті, питання про амплітуду, а отже, і про інтенсивність хвиль, що поширюються в різних напрямках. Френель вклав у принцип Гюйгенса фізичний зміст, доповнивши його ідеєю інтерференції вторинних хвиль. Принцип Гюйгенса-Френеля можна виразити такими положеннями (див. також рис. 2.8):

1. Під час розрахунку амплітуди світлових коливань, що збуджуються джерелом в довільній точці М, джерело можна замінити еквівалентною йому системою вторинних джерел – малих ділянок dS будь-якої замкненої допоміжної поверхні S, проведеної так, щоб вона охоплювала джерело і не охоплювала розглядувану точку М. Вторинні джерела, які еквівалентні джерелу , когерентні між собою, тому вторинні хвилі, збуджені ними, інтерферують. Розрахунок інтерференції найпростіший у випадку, якщо Sхвильова поверхня (сфера радіусом ) для світла джерела , оскільки при цьому фази коливань всіх вторинних джерел однакові.

2. Амплітуда коливань, що збуджуються в точці М вторинним джерелом, пропорційна до площі dS відповідної ділянки хвильової поверхні, і обернено пропорційна до від­стані r від неї до точки М і залежить від кута між зовнішньою нормаллю до хвильової поверхні і напрямком від елемента dS до точки М (рис. 2.8):

, (2.22)

де – фаза коливань в місці розміщення хвильової поверхні, a – величина, яка пропорційна до амплітуди первинних хвиль в точках елемента dS; монотонно спадає від 1 при до0 при (вторинні джерела не випромінюють назад); кут називається кутом дифракції.

Результуюче коливання в точці М є суперпозицією коливань , взятих для всієї хвильової поверхні S:

. ` (2.23)

Ця формула є аналітичним виразом принципу Гюйгенса-Френеля.

 

Метод зон Френеля

За допомогою принципу Гюйгенса–Френеля можна обґрунтувати з хвильових властивостей світла закон прямолінійного поширення світла в однорідному середовищі. Френель розв’язав цю задачу, розглянувши взаємну інтерференцію вторинних хвиль, і застосував прийом, який отримав назву методу зон Френеля.

Знайдемо в довільній точці М амплітуду світлової хвилі, що поширюється в однорідному середовищі від точкового джерела .

Згідно з принципом Гюйгенса–Френеля замінимо дію джерела дією уявних джерел, які розміщені на допоміжній поверхні S, що є однією з хвильових по­верхонь хвилі, яка поширюється від джерела (рис. 2.9).

Ця допоміжна поверхня є поверхнею сфери з центром в . Френель розбив хвильову поверхню S на кільцеві зони такого розміру, щоб відстані від країв зони до М відрізнялись на ( , де – показник заломлення середовища), тобто

.

Подібне розбивання хвильової поверхні S на зони можна виконати, провівши з точки М концентричні сфери радіусами

; ; ; ... .

Точки сфери S, що лежать від точки М на відстанях ; ; і т.д. утворюють межі 1-ї, 2-ї, 3-ї і т.д. зон Френеля.

Оскільки коливання від сусідніх зон проходять до точки М відстані, які відрізняються на , то в точку М вони надходять з протилежними фазами і при накладанні ці коливання будуть взаємно ослаблюватися. Тому амплітуда результуючого коливання в точці М

, (2.24)

де , , … – амплітуди коливань, що збуджуються 1-ю, 2-ю,…, m-ю зонами. В цей вираз всі амплітуди коливань від непарних зон входять зі знаком „+”, а від парних зон – зі знаком „–”.

Величина залежить від площі m-ї зони і кута між зовнішньою нормаллю до поверхні зони в якій-небудь її точці і прямою, яка напрямлена з цієї точки в точку М.

Із збільшенням номера зони m зростають кут і відстань від зони до точки М. Згідно із принципом Гюйгенса-Френеля це приводить до монотонного зменшення інтенсивності випромінювання в напрямку точки M. Тому

.

Загальне число N зон Френеля, які вміщуються на частині сфери, яка повернена до точки М, дуже велике. Тому можна вважати, що в межах не дуже великих змін m залежність від m є лінійною, і амплітуда коливань, яка викликана якою-небудь m-ю зоною, дорівнює півсумі амплітуд коливань, що викликані -ю і -ю зонами. Тобто

. (2.25)

Тоді амплітуда результуючого коливання в точці М матиме такий вигляд:

, (2.26)

оскільки усі вирази, що стоять у дужках, дорівнюють нулю. Тоді амплітуда коливань, що створюється в довільній точці М сферичною хвильовою поверхнею, дорівнює половині амплітуди коливань, що створюється однією центральною зоною. Дія всієї хвильової поверхні на точку М зводиться до дії її малої ділянки, меншої, ніж центральна зона.

Отже, поширення світла від джерела світла до точки М відбувається так, немовби світловий потік поширюється всередині дуже вузького каналу вздовж M, тобто прямолінійно. У такий спосіб хвильовий принцип Гюйгенса-Френеля дозволяє пояснити прямолінійне поширення світла в однорідному середовищі.

Інтенсивність світла в точці M мож­на значно збільшити, якщо закрити всі парні або непарні зони Френеля. Тоді результуюча амплітуда коливань відповідно дорівнюватиме:

або

.

Екран, який перекриває всі парні або непарні зони Френеля, називається зонною пластинкою. Пластинка має складатися з прозорих або непрозорих кілець, радіуси яких дорівнюють . Радіуси прозорих кілець підраховують для m=0, 2, 4,…, непрозорих – для m=1, 3, 5,….







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.