Здавалка
Главная | Обратная связь

Основы оптоэлектроники. Оптроны и их классификация.



Оптоэлектроника — раздел электроники, связанный с преобразованием электромагнитного излучения оптического диапазона в электрический ток и обратно.

Приборы оптоэлектроники:

1. Для преобразования света в электрический ток — фото-сопротивления (фоторезисторы), фотодиоды (pin, лавинный), фототранзисторы, фототиристоры, пироэлектрические приёмники, приборы с зарядовой связью (ПЗС), фотоэлектронные умножители (ФЭУ).

2. Для преобразования тока в световое излучение — различного рода лампы накаливания, электролюминесцентные индикаторы, полупроводниковые светодиоды и лазеры (газовые, твердотельные, полупроводниковые).

3. Для изоляции электрических цепей (последовательного преобразования «ток-свет-ток») служат отдельные устройства оптоэлектроники — оптопары — резисторные, диодные, транзисторные, тиристорные, оптопары на одно-переходных фототранзисторах и оптопары с открытым оптическим каналом.

4. Для применения в различных электронных устройствах служат оптоэлектронные интегральные схемы — интегральные микросхемы, в которых осуществляется оптическая связь между отдельными узлами или компонентами с целью изоляции их друг от друга (гальванической развязки).

Оптопара или оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.

По степени интеграции

  • оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
  • оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).

По типу оптического канала

  • с открытым оптическим каналом
  • с закрытым оптическим каналом

По типу фотоприёмника

  • с фоторезистором (резисторные оптопары)
  • с фотодиодом
  • с биполярным (обычным или составным) фототранзистором
  • с фотогальваническим генератором (солнечной батарейкой.
  • с фототиристором или фотосимистором.

26.Интегральные микросхемы (ИМС): основные понятия микроэлектроники.

Интегральная микросхема (ИМС) — это изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов, которые могут рассматриваться как единое целое, выполнены в едином технологическом процессе и заключены в герметизированный корпус.

Электронная аппаратура на ИМС обладает следующими большими преимуществами:

1. Высокой надежностью и технологичностью, поскольку ИМС изготовляют на специализированных предприятиях на основе хорошо автоматизированной современной технологии. При создании аппаратуры на ИМС резко снижаются затраты труда на сборку и монтаж аппаратуры, уменьшается число паяных соединений, которые являются одним из наименее надежных элементов электронных узлов. Поэтому аппаратура на ИМС намного надежнее, чем аппаратура на дискретных элементах, меньше вероятность ошибок при монтаже. Только ИМС обеспечили высокую надежность, необходимую для создания систем управления космическими аппаратами и современных больших вычислительных систем.

2. Аппаратура на ИМС обладает малыми массой и габаритами.

3. При создании аппаратуры из готовых ИМС резко сокращается время на разработку изделия, так как используются готовые узлы и блоки, упрощается внедрение в производство.

4. Применение аппаратуры на ИМС массового выпуска снижает стоимость изделия, так как уменьшаются расходы на монтаж и наладку устройства, да и сами микросхемы стоят дешевле заменяемых ими схем на дискретных компонентах, так как выпускаются по наиболее совершенной и производительной технологии.

5. Создание аппаратуры на ИМС упрощает организацию производства за счет уменьшения числа операций и сокращения числа комплектующих изделий.

Микроэлектроника — подраздел электроники, связанный с изучением и производством электронных компонентов с геометрическими размерами характерных элементов порядка нескольких микрометров и меньше

Такие устройства обычно производят из полупроводников и полупроводниковых соединений, используя фотолитографию и легирование. Большинство компонентов обычной электроники: резисторы, конденсаторы, катушки индуктивности, диоды, транзисторы, изоляторы и проводник — также применяются и в микроэлектронике, но уже в виде миниатюрных устройств в интегральном исполнении.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.