Усилительные каскады с общей базой и с общим коллектором (эмиттерный повторитель)
Эмиттерный повторитель — частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное — мало. В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, входной сигнал подаётся на базу, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности. Усилительные каскады на полевых транзисторах. Каскад усиления напряжения с общим истоком. Наибольшие значения входного сопротивления позволяют получить каскады на полевых транзисторах. Полевые транзисторы управляются напряжением и практически не потребляют тока из входной цепи. Поэтому их можно использовать вместе с маломощными источниками сигнала, причем через источник сигнала постоянная составляющая тока не протекает.
Усилители мощности. Общие положения. Бестрансформаторные двухтактные схемы усилителей мощности в классе B и АВ. Применение комплементарных транзисторов Что же представляет из себя Усилитель Мощности – далее, для краткости будем называть его УМ. Условно, его структурную схему можно разделить на три части: 1. 2. Промежуточный каскад 3. Выходной каскад Все эти три части выполняют одну задачу – увеличить мощность выходного сигнала до такого уровня, чтобы можно было раскачать нагрузку с низким сопротивлением - динамическую головку или наушники. Как они это делают? Очень просто – берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала. Начнем с того, что посмотрим на общую принципиальную схему выходного каскада УМ.
начнем по порядку – режим А.
В результате мы получаем практически идеальную линейность каскада и полное отсутствие нелинейных искажений. НО. Во-первых, мощность, потребляемая от источника питания, равна удвоенной мощности выходного сигнала и является величиной постоянной, не зависящей от входного сигнала. То есть, если усилитель развивает максимальную выходную мощность 100 ватт, то потребляемая от источника питания мощность составит 200 ватт. Выходные транзисторы, как вы знаете имеют дурную привычку греться. То есть, рассеивают некоторую мощность. В случае режима А, рассеиваемая мощность для одного транзистора равна следующему:
Еще одна особенность класса А – мощность рассеяния транзисторов тем больше, чем меньше входной сигнал. То есть, если вы оставите работающий усилитель без входного сигнала, он будет греться как печка, так как в отсутствие входного сигнала мощность рассеяния транзистора равна максимальной выходной мощности усилителя. КПД считается так: Следующий класс усилителей – класс В Схема немножко упростилась в связи со спецификой работы усилителя в этом режиме. Как можно увидеть – смещения тут нет совсем никакого, то есть транзисторы открываются исключительно от входного сигнала. Таким образом, особенность этого режима заключается в том, что при отсутствии входного сигнала оба транзистора закрыты, и каскад не потребляет от источника питания совершенно ничего – I0 =0. При наличии входного сигнала транзисторы работаю поочередно – для положительных полуволн работает транзистор Т1, а для отрицательных Т2. Для начала введем некий коэффициент а – так называемый, коэффициент использования.
потребляемая мощность: Ну в общем, в случае режима В все по-честному – потребляемая мощность возрастает по мере роста входного сигнала и соответственно, выходной мощности. Максимальная потребляемая мощность при а=1 достигает
То есть, что мы получаем. Допустим, величина положительной полуволны начинает убывать. Транзистор Т1 начинает закрываться. И наступает такой момент, когда величина первой полуволны падает ниже 0,7 вольта и Т1 закрывается, но ведь Т2 то еще не открылся, а откроется он только тогда, когда сигнал перейдет в отрицательную полуволну и её величина достигнет напряжения –0,7 вольт. Таким образом, мы получаем дырку в сигнале шириной в 1,4 вольта. Решение этой проблемы найдено, найдено давно и называется оно режим АВ. Начальные токи покоя баз транзисторов здесь задаются с помощью резисторов ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|