Здавалка
Главная | Обратная связь

Аммонолиз галогеналканов



При нагревании галогеналканов со спиртовым раствором аммиака в запаянных трубках образуется смесь продуктов. При взаимодействии аммиака с галогеналканами образуются первичные алкиламины. Моноалкиламины являются более сильными нуклеофилами, чем аммиак; они будут легко реагировать с галогеналканом, давая значительные количества вторичных и третичных аминов и даже четвертичные соли аммония:

Аммонолиз галогенпроизводных относится к реакциям нуклеофильного замещения. В частности, реакция СН3СН2Сl с NН3 протекает по механизму SN2:

Как было отмечено выше, в результате реакции образуется смесь первичных, вторичных и третичных аминов, а также четвертичные аммонийные соли, поэтому первичные амины обычно получают другими способами.

2. Аммонолиз спиртов

Реакция состоит в замещении атомов водорода в аммиаке или амине на алкильные группы. Это важнейший способ синтеза первичных аминов:

Аммонолиз спиртов реализован в значительных масштабах для синтеза низших алифатических аминов (метил– и этиламины). Они применяются в качестве топлива для жидкостных ракетных двигателей и как промежуточные продукты органического синтеза (получение других аминов, диметилгидразина, анионообменных смол и анионоактивных веществ, пестицидов, карбаматов и дитиокарбаматов).

3. Синтез Габриэля

Синтез Габриэля позволяет получать первичные амины, свободные от более высокоалкилированных продуктов. Алкилирование фталимидакалия по механизму SN2 дает N-алкилфталимид, который можно легко гидролизовать до соответствующего амина:

Фталимид получают при нагревании фталевого ангидрида с аммиаком:

Фталимид обладает кислотными свойствами из-за делокализации отрицательного заряда имид-аниона на двух ацильных атомах кислорода. Он теряет протон, связанный с азотом, при взаимодействии с основанием типа гидроксида калия. В результате этой реакции образуется фталимид-ион – анион, который стабилизируется:

4. Восстановительное аминирование карбонильных соединений

Многие карбонильные соединения превращаются в амины в процессе восстановления в присутствии аммиака. Восстановление осуществляется либо каталитическим гидрированием, либо с помощью цианборгидрида натрия NaBH3CN. Механизм этой реакции включает две важные стадии: образование имина и восстановление имина в амин:

Если вместо аммиака использовать первичный амин, то продуктом реакции будет вторичный амин.

5. Восстановление нитроалканов, оксимов, нитрилов, амидов

Азотсодержащие соединения (нитроалканы, оксимы, амиды, нитрилы и изонитрилы) под действием водорода или других восстановителей (LiAlH4) дают либо первичные амины, либо вторичные, либо их смесь:

R-NO2 + 3 H2 → R-NH2 + 2 H2O

R-C≡N + 2 H2 → R-CH2-NH2

R-N=C + 2 H2 → R-NH-CH3

Катализаторы – Pt, Pd, Ni.

6. Расщепление амидов кислот (перегруппировка Гофмана)

Амиды алифатических и ароматических карбоновых кислот реагируют со щелочными растворами иода, брома или хлора с образованием первичных аминов. Это так называемая гипогалогенитная реакция Гофмана – она позволяет не только синтезировать первичные амины, но и укорачивать углеродную цепь на один атом.

Сначала из стабилизированного резонансом амид-иона образуется N-галогензамещенный амид (здесь N-бромамид), который в щелочном растворе неустойчив и превращается в изоцианат. Изоцианаты, так же как их углеродные аналоги (кетены), быстро реагируют с водой. Продукт гидратации, карбаминовая кислота, легко декарбоксилируется с образованием амина.

7. Перегруппировка Курциуса

Хлорангидриды кислот, взаимодействуя с азидом натрия NaN3, дают ацилазиды (азиды кислот), которые при нагревании превращаются в изоцианаты:

Превращение ацилазидов в изоцианаты, как показано ниже, представляет собой согласованный процесс. Эта реакция носит название перегруппировки Курциуса:

Затем изоцианаты реагируют с водой и образуются амины:

Физические свойства

Первичные и вторичные амины способны образовывать межмолекулярные водородные связи. Поэтому амины имеют более высокие температуры кипения, чем неполярные соединения с той же молекулярной массой. Спирты и карбоновые кислоты образуют более прочные водородные связи, чем амины. Поскольку третичные амины не содержат водородных атомов при атоме азота, они не образуют водородных связей.

Низкомолекулярные амины смешиваются с водой в любых соотношениях.

Химические свойства аминов

Химические свойства аминов определяются наличием и характером аминогруппы (первичная, вторичная, третичная).

1. Реакции аминов с кислотами

Амины, подобно аммиаку, являются основаниями. Они реагируют с разбавленными кислотами с образованием солей:

R-NH2 + HCl → R-NH3+Cl-

Эти соли при взаимодействии с водными растворами оснований выделяют амины.

В водных растворах амины подобно аммиаку существуют в виде гидратов:

СН3NH3+OH(СН3)2NH2+OH(СН3)3NH+OH-

Основность аминов определяется легкостью, с которой амин отщепляет протон от воды. Константа равновесия этой реакции называется константой основности Кb амина:

Увеличение Кb означает повышение основности (табл. 26.1).

Таблица 26.1

Константы основности аммиака и некоторых аминов

Вещество Кb
Аммиак 1,8·10-5
Метиламин 4,5·10-4
Этиламин 5,1·10-4
Диэтиламин 10,0·10-4
Триэтиламин 5,6·10-4

 

Как видно из этого примера, замена атомов водорода на алкильные группы увеличивает основность азота. Это согласуется с электронодонорной природой алкильных групп, стабилизирующих сопряженную кислоту амина R3NH+ и тем самым повышающих его основность. Дополнительная стабилизация сопряженной кислоты амина происходит за счет эффекта сольватации молекулами растворителя. Триэтиламин обладает несколько меньшей основностью, чем диэтиламин. Полагают, что это вызвано уменьшением эффекта сольватации. Поскольку пространство вокруг атома азота занято алкильными группами, стабилизация на нем положительного заряда молекулами растворителя затруднена. В газовой фазе, где нет влияния молекул растворителя, триэтиламин обладает большей основностью, чем диэтиламин.

2. Алкилирование аминов галогеналканами

Амины легко реагируют с галогеналканами, образуя вторичные и третичные амины, как показано выше. На последней стадии образуются четвертичные соли аммония – четыре органических группы ковалентно связаны с азотом, положительный заряд уравновешен наличием отрицательного иона. Из четвертичных солей можно выделить четвертичные основания:

2 R4N+X+ Ag2O + H2O → 2 AgX↓ + 2 R4N+OH-

Четвертичные аммониевые основания (белые кристаллические вещества) по основности сопоставимы с NaOH, КОН.

3. Ацилирование аминов (получение амидов)

Первичные и вторичные амины реагируют с ангидридами и галогенангидридами кислот с образованием амидов:

Замещенные амиды называют как производные незамещенных амидов карбоновых кислот.

Образующаяся в ходе реакции кислота связывает эквивалентное количество непрореагировавшего амина. Такой метод становится неэкономичным, если амин трудно синтезировать или он представляет собой дорогостоящий реактив. Поэтому амины часто ацилируют по реакции Шоттен-Баумана, которая заключается во взаимодействии амина и ацилирующего агента в присутствии водного раствора едкого натра:

4. Взаимодействие с азотистой кислотой

Азотистая кислота HONO неустойчива, но ее водный раствор можно получить, растворив при охлаждении нитрит натрия в разбавленной кислоте, например, соляной.

Первичные алифатические амины реагируют с холодным водным раствором азотистой кислоты с образованием диазониевых солей, при разложении которых образуется смесь разнообразных продуктов:

Вторичные алифатические амины реагируют с азотистой кислотой с образованием N-нитрозоаминов желтого цвета. Эти соединения, амиды азотистой кислоты, являются очень слабыми основаниями.

При взаимодействии третичных алкиламинов с азотистой кислотой образуются сложные смеси.

5. Образование изонитрилов

Первичные алифатические амины образуют изонитрилы при слабом нагревании с хлороформом в присутствии концентрированного раствора щелочи:

Отдельные представители

Все амины ядовиты и являются кровяными ядами. Особенно опасны их N-нитрозопроизводные.

Метиламин применяется в производстве инсектицидов, фунгицидов, ускорителей вулканизации, поверхностно-активных веществ, красителей, ракетных топлив, растворителей.

Некоторые амины применяются как селективные растворители для извлечения урана из сернокислых растворов. Амины, обладающие запахом рыбы, используются как приманка в борьбе с полевыми грызунами.

В последние годы третичные амины и соли четвертичных аммониевых оснований получили широкое распространение в качестве катализаторов межфазного переноса в органическом синтезе.

Лекция 27. АРОМАТИЧЕСКИЕ АМИНЫ

Ароматические амины. Классификация, изомерия. Номенклатура. Способыполучения: из нитросоединений (реакция Зинина) и арилгалогенидов.Получение вторичных и третичныхаминов.

Химические свойства. Влияние бензольного кольца и заместителей в нем на основность. Реакции алкилирования и ацилирования. Основания Шиффа. Реакции первичных, вторичных и третичных аминов с азотистой кислотой. Реакции электрофильного замещения у ароматическихаминов. Особенности этой реакции. Анилин, п-толуидин, N,N-диметиламин. Способы получения, применение.

Ароматические амины могут быть первичными ArNН2 (анилин, толуидины),вторичными Ar2NH (дифениламин) и третичными Ar3N (трифениламин), а также жирноароматическими ArN(СН3)2 (N,N-диметиланилин).

Способы получения ароматических аминов







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.