Здавалка
Главная | Обратная связь

Реакции электрофильного замещениия



Карбонильная группа является электроноакцепторным заместителем, дезактивирует ароматическое кольцо в реакциях электрофильного замещения и направляет электрофильный агент в м-положение:

Ароматические альдегиды при хранении легко окисляются до кислот. Окисление ускоряется светом и катализаторами – солями металлов, например, железа.

Окисление можно предотвратить добавлением ничтожных количеств ингибиторов – фенолов или аминов.

Ароматические кетоны менее реакционноспособны, чем кетоны жирного ряда. Для них не характерна реакция с бисульфитом натрия. С гидроксиламином и производными гидразина, а также магнийорганическими соединениями ароматические кетоны реагируют по обычной схеме.

Жирноароматические кетоны (например, ацетофенон) благодаря подвижности водородных атомов у атома углерода в α-положении легко галогенируются и способны к различным реакциям конденсации (альдольная конденсация, конденсация Кляйзена).

Отдельные представители

Бензальдегид – бесцветная жидкость с запахом горького миндаля, т. кип. 179,5°С. На воздухе он быстро окисляется в бензойную кислоту. Бензальдегид встречается в природе в виде гликозида амигдалина в масле горьких миндалей, в косточках вишни, абрикоса, персика и т.д. Амигдалин под действием ферментов дает бензальдегид, синильную кислоту и дисахарид генцибиозу. Бензальдегид в промышленности получают каталитическим окислением толуола. Широко применяется в синтезе красителей, лекарств и душистых веществ.

Коричный альдегид С6Н5-СН=СН-СНО применяется в парфюмерной промышленности.

Ацетофенон – имеет запах цветов черемухи. Встречается в каменноугольной смоле. В промышленности его получают каталитическим окислением этилбензола кислородом воздуха. Применяется в парфюмерии.

Бензофенон – также применяется в парфюмерной промышленности, галлогенпроизводные о-аминобензофенона используются в синтезе успокаивающих лекарственных препаратов (транквилизаторов).

КАРБОНОВЫЕ КИСЛОТЫ

Лекция 20. ОДНООСНОВНЫЕ НАСЫЩЕННЫЕ
КАРБОНОВЫЕ КИСЛОТЫ

Гомологический ряд насыщенных карбоновых кислот. Общая формула. Изомерия. Номенклатура. Способы получения: из алканов, алкенов, алкинов, спиртов, альдегидов и кетонов, галогеналканов (через нитрилы и по реакции Гриньяра) и сложных эфиров (гидролиз жиров). Физические свойства. Строение карбоксильной группы,
p,p – сопряжение.

 

Органические карбоновые кислоты характеризуются наличием функциональной карбоксильной группы СООН. По числу этих групп в молекуле различают одно-, двух– и многоосновные кислоты. Органические кислоты могут быть предельными (насыщенными) – карбоксил связан с алкилом, непредельными (ненасыщенными) – карбоксил связан с радикалом непредельного углеводорода и ароматическими – карбоксил связан с бензольным кольцом.

Одноосновные предельные карбоновые кислоты имеют общую формулу СnН2nО2 или CnH2n+1COOH. Изомерия связана с изомерией углеродного скелета.

Кислоты С13 не имеют изомеров, по мере возрастания углеродной цепи число изомеров увеличивается.

По системе IUРАС карбоновые кислоты называют, выбирая за основу наиболее длинную цепь, содержащую карбоксильную группу, и добавляя окончание -овая кислота; углеродному атому карбоксильной группы приписывается номер 1. Для многих карбоновых кислот сохранились их тривиальные названия (муравьиная, уксусная, масляная); положение заместителей можно обозначать буквами греческого алфавита или цифрами:

Остатки карбоновых кислот имеют следующие названия:

Кислотные остатки RCO– (ацилы) имеют следующие названия:

метаноил формил НСО-
этаноил ацетил СН3СО-
пропаноил пропионил СН3СН2СО-
бутаноил бутирил СН3СН2СН2СО-
пентаноил валероил СН3СН2СН2СН2СО-

Карбоксилат-анионы имеют следующие названия:

НСОО– формиат (метаноат);

СН3СОО– ацетат (этаноат);

СН3СН2СОО– пропионат (пропаноат).

Промышленные способы получения
карбоновых кислот

1. Окисление углеводородов. Существует два способа: окисление низших алканов C4-C8 преимущественно в уксусную кислоту и окисление твердого парафина в так называемые синтетические жирные кислоты (СЖК) с прямой цепью углеродных атомов С1020, являющихся сырьем для синтеза ПАВ (поверхностно-активных веществ).

Процесс протекает в жидкой фазе при нагревании или в присутствии катализаторов. При окислении алканов происходит деструкция по связям между вторичными углеродными атомами, поэтому из н-бутана образуется главным образом уксусная кислота, а в качестве побочных продуктов – метилэтилкетон и этилацетат.

2.Синтезы на основе оксида углерода (II). Карбоновые кислоты получают на основе оксида углерода по реакции карбонилирования:

Присоединение по двойной связи при кислотном катализе всегда протекает по правилу Марковникова, вследствие этого только из этилена получается неразветвленная кислота, а из его гомологов – α-метилзамещенные кислоты. Особый интерес данный метод представляет для синтеза кислот с третичным радикалом (неокислот) из изоолефинов (реакция Коха):

Механизм реакции состоит в предварительном протонировании алкена кислотой с образованием иона карбения, его взаимодействия с СО с получением ацилий – катиона и реакции последнего с водой с образованием карбоновой кислоты:

Неокислоты и их соли обладают очень высокой растворимостью и вязкостью, а их сложные эфиры – стабильностью к гидролизу, что обеспечивает им широкое применение в ряде отраслей.

Карбонилирование спиртов катализируется комплексами металлов (Ni, Со, Fe, Pd). Процесс реализован в промышленности для синтеза уксусной кислоты из метанола и характеризуется высокими экономическими показателями.

Кислоты также получают окислением альдегидов (продукт оксосинтеза).

Лабораторные способы получения
карбоновых кислот

1. Окисление первичных спиртов (см. лекцию 14).

2. Окисление альдегидов и кетонов. Альдегиды окисляются значительно легче, чем кетоны. Кроме того, окисление альдегидов приводит к образованию кислот с тем же числом углеродных атомов, в то время как окисление кетонов протекает с разрывом углерод-углеродных связей (образуются две кислоты или кислота и кетон):

Окислителями служат перманганат калия или бихромат. Окисление кетонов требует более жестких условий, чем окисление альдегидов.

3. Гидролиз нитрилов. Нитрилы получают взаимодействием галогеналканов с цианистым калием, а затем их подвергают гидролизу водными растворами кислот или щелочей. В кислой среде азот выделяется в виде соли аммония:

в щелочной – в виде гидроксида аммония, который разлагается с выделением аммиака, кислота же получается в виде соли:

4. Синтез Гриньяра. При взаимодействии магнийорганических соединений с диоксидом углерода образуются соли карбоновых кислот:

Под действием сильной кислоты (обычно НСl) соль превращается в кислоту:

5. Гидролиз жиров. Жиры – сложные эфиры карбоновых кислот и глицерина (триглицериды). Карбоновые кислоты, входящие в состав жиров, имеют углеродную цепь от 3 до 18 углеродных атомов.

Кипячение жиров или масел с водными растворами щелочей (NaOH, КОН) приводит к получению солей карбоновых кислот и глицерина.







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.