Основные характеристики параметров генеральной и выборочной совокупности
В основе статистических выводов проведенного исследования лежит распределение случайной величины По своей природе распределения бывают непрерывными и дискретными. Наиболее известным непрерывным распределением является нормальное. Выборочными аналогами параметров В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1. Долей выборки kn называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности: kn = n/N. Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n: w = nn/n. Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки kn в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%). Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки. Таблица 9.1 Основные параметры генеральной и выборочной совокупностей Ошибки выборки При любом статистическом наблюдении (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении). Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора). Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной. Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении). Ошибка выборочного наблюдения Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения Средняя ошибка выборкиесть величина т.е. при достаточно больших Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки Где
где
где
Однако о величине средней ошибки Математически это утверждение для средней выражается в виде: а для доли выражение (1) примет вид: где Значения функции Ф(t) при некоторых значениях t равны: Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибкиm (t = 1), с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибокm (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) .Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3%. В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки. Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|