Уравнения однородной линии в стационарном режиме
Под первичными параметрами линии будем понимать сопротивление R0 (Ом/м) индуктивность L0 (Гн/м), проводимость G0 (go) (Cм/м) и емкость C0 (Ф/м), отнесенные к единице ее длины. Для получения уравнений однородной линии разобьем ее на отдельные участки бесконечно малой длины dх << λ/4 со структурой, показанной на рис. 1, где переменная х показывает расстояние от начала линии. Здесь уже можно применить законы Кирхгофа. Пусть напряжение и ток в начале такого элементарного участка равны u и i, а в Разность напряжений в начале и конце участка определяется падением напряжения на резистивном и индуктивном элементах, а изменение тока на участке равно сумме токов утечки и смещения через проводимость и емкость. Таким образом, по законам Кирхгофа с учетом, что ток и напряжение следует рассматривать функциями двух переменных координаты х и времени t получим
или после сокращения на dx
Эти уравнения называют телеграфными, так как были рассмотрены при исследовании передачи телеграфных сообщений. Теорию цепей с распределенными параметрами в установившихся режимах будем рассматривать для случая синусоидального тока. Тогда полученные соотношения при ƒ=0 можно распространить и на цепи постоянного тока, а воспользовавшись разложением в ряд Фурье – на линии периодического несинусоидального тока. При гармоническом воздействии, вводя комплексные величины и заменяя ∂⁄∂t на jω, на основании (1) и (2) получаем
Где Ζo = Ro+jωLo и Yo=Go+jωCo - соответственно комплексные продольное сопротивление и поперечная проводимость схемы замещения на единицу длины линии. Продифференцировав (3) по х и подставив выражение dI⁄dx из (4), запишем d²U ⁄dx² = Ζo∙Yo∙U Характеристическое уравнение p²-Ζo∙Yo=0, откуда p=± Таким образом, будем иметь в решении две составляющие для действующих значений напряжений
Для тока согласно уравнению (3) можно записать
где Волновое сопротивление ZВ и постоянную распространения γ называют вторичными параметрами длинной линии, которые характеризуют ее свойства как устройства для передачи электрического сигнала. Определяя
Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая движется и затухает в направлении возрастания х, вторая убывания х. Действительно, в фиксированный момент времени каждое из слагаемых представляет собой затухающую (вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной точке – синусоидальную функцию времени. Волну, движущую от начала линии в сторону возрастания х, называют прямой (падающей), а движущуюся от конца линии в направлении убывания х – обратной (отраженной). Коэффициент ослабления показывает как изменяется амплитуда или действующее значение составляющей волны (например прямой волны) на единицу длины в логарифмических единицах На рис. 2 представлена затухающая синусоида прямой волны для моментов времени
Продифференцировав (8) по времени, получим
Длиной волны
откуда и с учетом (9)
В соответствии с введенными понятиями прямой и обратной волн распределение напряжения вдоль линии в любой момент времени можно трактовать как результат наложения двух волн: прямой и обратной, перемещающихся вдоль линии с одинаковой фазовой скоростью, но в противоположных направлениях:
где в соответствии с (5) Представление напряжения в виде суммы прямой и обратной волн согласно (10) означает, что положительные направления напряжения для обеих волн выбраны одинаково: от верхнего провода к нижнему. Аналогично для тока на основании (6) можно записать
Где Положительные направления прямой и обратной волн тока в соответствии с (11) различны: положительное направление прямой волны совпадает с положительным направлением тока На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется закон Ома в комплексной форме
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|