Здавалка
Главная | Обратная связь

Предмет и задачи радиоэлектроники



ВВЕДЕНИЕ

 

Радиоэлектроника – отрасль науки и техники, имеющая дело с использованием электромагнитных явлений и процессов для передачи, приёма, обработки, хранения и применения различного рода информации.

Информация – это сведения об окружающем нас мире, данные и сведения, которые отражают свойства объектов в физических, технических, биологических, социальных системах.

Начиная с 19 века, для передачи информации человечество широко использует электромагнитные явления и процессы. В 1832 г русский ученый П.Л. Шиллинг изобрел первый телеграфный аппарат. В 1837 г. американец
С.Ф.-Б. Морзе создал электромеханический телеграфный аппарат. Информация в телеграфных аппаратах передавалась по проводам в виде кодов посредством двух состояний электрического напряжения: положительного и нулевого. Примером такого кода является азбука Морзе. Телеграфные коммуникационные системы используются до сих пор.

Следующим важным достижением в использовании электричества для обмена информацией стало изобретение в 1876 г. А.Г. Беллом телефонного аппарата, положившее началу телефонной связи.

Открытие А.С. Поповым в 1895 г. беспроволочного способа передачи сообщений (радиосвязь) положило начало использования электромагнитных волн для обмена информацией и зарождению новой отрасли науки и техники – радиотехники. В значительной степени достижения современной цивилизации определяются уровнем использования электромагнитных полей на практике.

Открытие английским ученым Дж. Дж. Томсоном электрона в 1897 г. положило начало зарождению новой области науки – электронике. С изобретением вакуумного диода (1905г.) и вакуумного триода в 1907 г. дальнейшее развитие радиотехники (телевидение, радиолокация, дальняя космическая связь) неразрывно связано с успехами в области электроники. С изобретением транзистора в 1948 г. начала быстро развиваться полупроводниковая электроника. В конце 50-х годов 20 столетия были созданы первые интегральные микросхемы. В научно-технической литературе появился термин «радиоэлектроника». Радиоэлектроника представляет собой собирательное название ряда неразрывно связанных между собой современных отраслей науки и техники, которые изучают явления взаимодействия электромагнитных полей с веществом и их практического применения для передачи, приема, хранения, обработки и использования различного рода информации.

Основными составляющими радиоэлектроники являются: радиофизика, радиотехника, электроника.

Радиофизика – отрасль физики, которая изучает явления взаимодействия электромагнитных полей с веществом.

Радиотехника – отрасль науки и техники, занимающаяся проблемами генерации, усиления, преобразования, передачи и приема электромагнитных колебаний и волн с целью передачи и приёма информации.

Электроника – отрасль науки и техники, которая исследует явления движения носителей электрического заряда в вакууме, газах, жидкостях, твердых телах и занимается проблемами их практического использования в электронных приборах.

Традиционными отраслями применения электромагнитных процессов и явлений являются радиосвязь, радиовещание и телевидение, радиолокация, радионавигация и телеуправление, радиоастрономия, вычислительная техника, системы автоматического управления, промышленная электроника. Наряду с этим радиоэлектронная аппаратура и электромагнитные поля давно стали использоваться в биологии и медицине. В медицине находят применение электромагнитные поля и волны для диагностики и физиотерапии практически во всем освоенном диапазоне частот.

В настоящее время трудно найти отрасли человеческой деятельности, где не применялись бы радиоэлектронные устройства.

Широкое применение радиоэлектроники обусловлено тем, что ее средства:

1. позволяют передавать информацию с предельной в природе скоростью с=108м/с;

2. позволяют регистрировать очень слабые сигналы с мощностью
Вт, т.е. обладают высокой чувствительностью;

3. позволяют создавать большие мощности сигналов: в непрерывном режиме 105 Вт, в импульсном режиме – 107 Вт;

4. дают возможность передавать большие объемы информации за счет освоения диапазона частот вплоть до 1015 Гц;

5. обеспечивают возможность передачи информации на большие расстояния;

6. дают возможность регистрировать и исследовать быстропротекающие процессы (длительностью порядка 10-9 – 10-12с);

7. имеют малые массу и габариты, пониженное потребление энергии, надежность и долговечность, в том числе, за счет минитюаризации устройств.

Цель курса: изучить физические принципы работы радиоэлектронных узлов и устройств, нашедших широкое применение; освоить основные методы обработки радиотехнических сигналов: частотную фильтрацию, усиление, генерацию, модуляцию, детектирование, цифровую обработку.


 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.