Здавалка
Главная | Обратная связь

Первое достаточное условие экстремума,



которое вкратце формулируется следующим образом: пусть функция дифференцируема в некоторой окрестности критической точки . Тогда:

если при переходе через точку производная меняет знак с «плюса» на «минус», то в данной точке функция достигает максимума;

если при переходе через точку производная меняет знак с «минуса» на «плюс», то в данной точке функция достигает минимума.

Тут всё очень и очень наглядно, представьте – функция росла-росла-росла, и после прохождения некоторого рубежа вдруг стала убывать. Максимум. Во втором случае график шёл-шёл-шёл «сверху вниз», а при переходе через точку развернулся в противоположную сторону. Минимум.

Исходя из вышесказанного, вытекает логичное решение: на числовой прямой нужно отложитьточки разрыва функции, критические точки и определить знаки производной на интервалах, которыевходят в область определения функции.

В рассматриваемом примере с непрерывностью на всё тип-топ, поэтому работаем только с найдёнными критическими точками.

Напрашивается метод интервалов, который уже применялся для определенияинтервалов знакопостоянства функции. Так почему бы его не использовать для производной? Ведь производная тоже простая смертная функция, найдёшь её – и делай всё, что хочешь.

Внимание! Сейчас мы работаем с ПРОИЗВОДНОЙ, а не с самой функцией!

Перед нами парабола , ветви которой направлены вниз, и многим читателям уже понятны знаки производной, но ради повторения снова пройдёмся по всем этапам метода интервалов. Отложим на числовой прямой найденные критические точки:

I) Берём какую-нибудь точку интервала и находим значение производной в данной точке. Удобнее всего выбрать :
, значит, производная отрицательна на всём интервале .

II) Выбираем точку , принадлежащую интервалу , и проводим аналогичное действие:
, следовательно, на всём интервале .

III) Вычислим значение производной в наиболее удобной точке последнего интервала:
, поэтому в любой точке интервала .

В результате получены следующие знаки производной:

Время собирать урожай!

На интервалах производная отрицательна, значит, САМА ФУНКЦИЯ на данных интервалахубывает, и её график идёт «сверху вниз». На среднем интервале , значит, функция возрастает на , и её график идёт «снизу вверх».

При переходе через точку производная меняет знак с «–» на «+», следовательно, в этой точке функция достигает минимума:

При переходе же через точку производная меняет знак с «+» на «–», и функция достигает максимума в данной точке:

Ответ: функции возрастает на интервале и убывает на интервалах . В точке функция достигает минимума: , а в точке – максимума:

Остерегайтесь сокращенной записи . Под значками обычно понимают минимальное и максимальное значение, а это, как пояснялось выше, далеко не то же самое, что минимум и максимум.

Пример так тщательно провёрнут через мясорубку, что грех не привести графическое изображение всех событий. Незнакомец теоретической части статьи снимает шляпу:

Что произошло? На первом этапе мы нашли производную и критические точки (в которых парабола пересекает ось абсцисс). Затем методом интервалов было установлено, где (парабола ниже оси) и (парабола выше оси). Таким образом, с помощью производной мы узнали интервалы возрастания/убывания и экстремумы «синей» функции.

Помимо 1-го достаточного условия экстремума существует и другое, так называемое 2-ое достаточное условие экстремума. Однако для исследования функцийоно малоинформативно и больше используется в экстремальных задачах.

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…».

 

 

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение:

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интерваловопределяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из 6-ти интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение ;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент: точки не считаются критическими – в них функцияне определена. Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ: функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотамидаёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

 







©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.