Порядок виконання роботи
1. Виміряти штангенциркулем в декількох місцях (не менше 5 разів) діаметр вала, на який намотується нитка. Обробивши результати, знайти радіус вала і довірливий інтервал. 2. Обертаючи колесо і намотуючи нитку на вал, підняти тягарець на висоту h від найнижчого положення тягарця. 3. Опустити колесо, виміряти час t, за який тягарець опуститься до найнижчого положення. Виміряти висоту h1, на яку підіймається тягарець за інерцією. Дослід повторити 5 разів. 4. Зняти колесо і знову повторити дослід п’ять разів, вимірюючи час t0 опускання тягарця до найнижчого положення і висоту підіймання тягарця за інерцією h2. 5. Виміряти зовнішній і внутрішній діаметри колеса. 6. Розрахувати моменти інерції колеса по експериментальним (1), (2) і теоретичним даним (3). Результати порівняти. 7. Розрахувати похибку вимірювання моменту інерції колеса по формулі .
Контрольні запитання 1.Що таке момент інерції? Яку роль він відіграє в динаміці обертального руху? В яких одиницях він вимірюється? 2. Звідки випливає, що момент інерції тіла є величина адитивна? 3. Сформулюйте теорему Гюйгенса-Штейнера. 4. Який закон покладений в основу виведення емпіричної формули? Сформулюйте його. 5. Момент якої сили приводить до обертального руху колеса? 6. Вкажіть раціональний спосіб обчислення моменту інерції тіл з отворами.
Лабораторна робота №4 Визначення швидкості седиментації По методу Стокса Мета роботи – з рівняння руху тіла сферичної форми в в’язкому середовищі визначити швидкість падіння тіла і порівняти її з дослідними даними. В даній роботі розглядається процес седиментації (осідання) частинок в полі сили тяжіння, що використовується, наприклад, для розшарування частинок різної густини в розчинах, суспензіях. На тверду кульку, що падає у в'язкій рідині, діють три сили: сила тяжіння кульки FТ, виштовхувальна сила FA, що визначається за законом Архімеда, і сила опору рухові кульки з боку рідини FC, яка зумовлена внутрішнім тертям рідини. Основну роль тут відіграє не тертя кульки об рідину, а взаємне тертя окремих шарів рідини. Найближчий до поверхні кульки шар рідини ніби прилипає до неї і рухається зі швидкістю кульки, інші шари – з дедалі меншою швидкістю. Робота сил в’язкості залежить від розмірів поверхні вибраною елемента рідини і пропорційна величині , а кінетична енергія цього ж елементу рідини залежить від його об’єму і пропорційна , де v – швидкість руху окремого шару рідини, – лінійні розміри елементу рідини, – її густина, а – коефіцієнт динамічної в’язкості рідини. Тому відношення енергії елементу рідини до роботи сил в’язкості, тобто безрозмірна величина: характеризує відносну роль сил в’язкості і називається числом Рейнольдса (на ім’я англійського фізика О. Рейнольдса). Чим менше число Рейнольдса, тим більшу роль відіграють сили в’язкості в процесі руху рідини. Коефіцієнт В’язкості h для різних рідин має різне значення і залежить від параметрів, які характеризують стан рідини, в першу чергу від її температури. Одиниці вимірювання коефіцієнту – кг/(м×с). Як бачимо, число Рейнольдса залежить від відношення коефіцієнта динамічної в’язкості h до її густини r. Тому відносний вплив в’язкості визначається величиною , яка називається кінематичною в’язкістю. Її одиниці вимірювання – м2/с. Якщо кулька падає в рідині, нескінченній у всіх напрямках, не залишаючи після себе ніяких завихрень, при малих значеннях числа Рейнольдса сила опору визначається законом Стокса: , де v – швидкість руху кульки; r — її радіус. Запишемо рівняння руху кульки: . Усі три сили, що діють на кульку, яка рухається в рідині, напрямлені по вертикалі: сила тертя і виштовхувальна сила – вгору, сила тяжіння — вниз. Сила тертя зі збільшенням швидкості кульки зростає. При певних швидкостях руху кульки алгебраїчна сума трьох сил дорівнює нулю (прискорення стане рівним нулю), тобто кулька рухається за інерцією з постійною швидкістю. Для цього випадку справедливе співвідношення або . де – густина кульки; – густина рідини. Розв’язавши рівняння відносно швидкості седиментації кульки, отримаємо . Зрозуміло, що забезпечити рух кульки в нескінченному середовищі практично неможливо, оскільки розміри посудини, в якій знаходиться рідина, скінченні. Тому при визначенні швидкості седиментації потрібно враховувати наявність стінок посудини. У випадку, коли кулька рухається в рідині, що знаходиться в циліндричній посудині радіусом R, при врахуванні наявності стінок, швидкість осідання можна визначати, як Установка (рис. 9) для визначення швидкості седиментації методом Стокса — це прозора циліндрична посудина, закріплена на штативі. Зверху посудина закрита кришкою з отвором, до якої прикріплений пристрій для виймання кульки. На стінці посудини нанесено дві мітки. Відстань між поверхнею рідини і верхньою міткою 10 – 12 см. Радіус кульки визначають за допомогою вимірювального мікроскопа або мікрометра; внутрішній радіус посудини – за допомогою штангенциркуля; відстань між другою верхньою і другою нижньою мітками на посудині — за допомогою мірної лінійки; час, за який кулька проходить відстань L між мітками, за допомогою електронного секундоміра. ©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|